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In forestry studies, deep learning models have achieved excellent performance in many

application scenarios (e.g., detecting forest damage). However, the unclear model

decisions (i.e., black-box) undermine the credibility of the results and hinder their

practicality. This study intends to obtain explanations of such models through the use

of explainable artificial intelligence methods, and then use feature unlearning methods

to improve their performance, which is the first such attempt in the field of forestry.

Results of three experiments show that the model training can be guided by expertise

to gain specific knowledge, which is reflected by explanations. For all three experiments

based on synthetic and real leaf images, the improvement of models is quantified in

the classification accuracy (up to 4.6%) and three indicators of explanation assessment

(i.e., root-mean-square error, cosine similarity, and the proportion of important pixels).

Besides, the introduced expertise in annotation matrix form was automatically created in

all experiments. This study emphasizes that studies of deep learning in forestry should

not only pursue model performance (e.g., higher classification accuracy) but also focus

on the explanations and try to improve models according to the expertise.
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1. INTRODUCTION

Due to climate change, environmental damage, and other related factors, extreme weather events
(e.g., wildfires, heat waves, and floods) are occurring more frequently all over the world in recent
years (Stott, 2016). As essential cogs in the global ecosystem, forests have many ecological functions
including conserving water, protecting biodiversity, and regulating climate (Führer, 2000; Zhang
et al., 2010). Therefore, forest care is vital for our future. Fortunately, the United Nations has
proposed 17 Sustainable Development Goals, where the 13th goal climate action, and 15th goal life
on land pertain to forest care1. This has promoted studies in forestry.

Remote sensing technology has provided data with high spatio-temporal resolution and many
spectral bands for forestry research, which allows researchers to use more information to build a
model than traditional ways of collecting data in the wild. Due to the ability to gain knowledge
from large amounts of train data, artificial intelligence technology represented by deep learning
models has also been applied in forestry to accomplish diverse tasks (Wang et al., 2021) including

1Sustainable Development Goals: https://sdgs.un.org/goals.
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FIGURE 6 | Examples of the real masks of two species’ leaves. The labeled pixels in masks are red.

FIGURE 7 | Examples of model explanations for the first task. The three rows display the input image, original explanation, and the explanation with the consideration

of expertise. The pixels outside the added circles of each input are labeled as the real masks. A warmer color in the explanation indicates a higher contribution value,

denoting a more important pixel for the classification task.

TABLE 1 | Accuracy and explanation assessment for the task of distinguishing between real and fake leaves.

Models Accuracy (%) RMSE CosineS
PIP

1% 5% 10%

Original 81.6 0.583 0.440 60.3 59.6 58.2

RRR 84.5 0.580 0.462 61.2 60.7 58.9

PIP is calculated based on three certain percents: 1, 5, and 10%.

The better results of every index are in bold.

maybe due to the already high original accuracy (>95%). It
may also be caused by the simplicity of the real masks, i.e.,

labeling the useless background pixels, which leverages limited
expertise. Nevertheless, the results of this experiment prove that
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FIGURE 8 | Examples of model explanations for the second task. The two columns reflect the explanations of healthy leaves and diseased leaves. For each column,

the three rows display the input image, original explanation, and the explanation with the consideration of expertise. A warmer color in the explanation indicates a

higher contribution value, denoting a more important pixel for the classification task.

TABLE 2 | Accuracy and explanation assessment for the task of identifying diseased pepper leaves.

Models Accuracy (%) RMSE CosineS
PIP

1% 5% 10%

Original 95.5 0.533 0.710 61.4 62.2 63.8

RRR 95.7 0.530 0.714 66.2 65.7 65.8

PIP is calculated based on three certain percents: 1, 5, and 10%.

The better results of every index are in bold.

it is possible to improve the deep learning models of identifying
diseased leaves.

In terms of the last task, Figure 9 illustrates examples of
model explanations for each of the 10 plant species. With the
expertise in annotation matrix form, the trained model focuses
more on the center pixels, pertaining to the leaf rather than
the corners, as can be seen obviously in the apple and grape
samples, which is analogous to the explanation improvement
in the experiment of identifying diseased leaves. Additionally,
the model with RRR utilization has an increased focus on
the leaf edges (e.g., the cherry sample in Figure 9), which is
consistent with common sense. Table 3 provides the results
of model accuracy and explanation assessment for the task of
classifying plant species. The second model surpasses the first
model in both accuracy and explanation assessment indicators.
The improvement in classification accuracy (4.6%) is the largest
among all three experiments, despite labeling a relatively small
number of useless pixels (as displayed in Figure 6) in the masks.

The results of this experiment show that it is possible to improve
the deep learning models for complex tasks.

The consideration of model explanations and corresponding
expertise can improve deep learning models in forestry, as
demonstrated by the three experiments. The degree of model
improvement is directly related to the task difficulty and quality
of the expertise.

4. DISCUSSION

Deep learning models require mining task-related knowledge
from the data. But for some practical applications, it is difficult
to avoid outliers in the train data. The outliers will affect the
model training because they contain the wrong information for
the task. However, the new research framework proposed in this
study can reduce such impact. Based on this framework, sample-
based explanations can be obtained by using XAI methods. The
corresponding explanations of outlier data may be different from

Frontiers in Plant Science | www.frontiersin.org 8 May 2022 | Volume 13 | Article 902105

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Cheng et al. DL Model Improvement by Expertise

FIGURE 9 | Examples of model explanations for the third task. The 10 columns reflect the explanations of 10 species’ leaves. The three rows display the input image,

original explanation, and the explanation with the consideration of expertise. A warmer color in the explanation indicates a higher contribution value, denoting a more

important pixel for the classification task.

TABLE 3 | Accuracy and explanation assessment for the task of classifying plant species.

Models Accuracy (%) RMSE CosineS
PIP

1% 5% 10%

Original 87.8 0.563 0.797 81.1 82.6 83.6

RRR 92.4 0.550 0.810 86.1 87.3 87.3

PIP is calculated based on three certain percents: 1, 5, and 10%.

The better results of every index are in bold.

TABLE 4 | Accuracy and explanation assessment (RMSE) results for the five-fold cross-validation.

Models Average_A (%) Max_A (%) Min_A (%) Average_R Max_R Min_R

Original 89.3 90.1 87.5 0.564 0.582 0.550

RRR 90.2 92.4 89.1 0.561 0.571 0.552

Average_, Max_, and Min_ denote the average, max, and min values of the corresponding indicators (i.e., accuracy and RMSE) in five experiments.

The better results of every index are in bold.

other normal samples’ explanations, which helps identify outliers
and remove them from the train data. Moreover, as mentioned
in Section 2.3, the applied FUL method RRR does not require
labeling the annotation matrix of all samples. It means that the
corresponding real masks of potential outlier data can be set as a
zero matrix, which has no additional impact on model training.

The sampling variability could also affect the performance of
deep learning models. To verify that the proposed framework is
robust to the train data, we take the third task (i.e., classifying
plant species) as an example and use the five-fold cross-validation

method. The original data are divided into five equal parts. For

each experiment, four of them form the train data, while the

other one is used for testing. All the network parameters and
experimental processes are the same as the ones in the above
experiment (Section 3.1.3). Table 4 provides the results of model
accuracy and explanation assessment (take RMSE as an example)
in the five-fold cross-validation. The max and min values of
accuracy and RMSE are close, which proves that the model
performance is stable for different train data. Besides, the models
using RRR surpass the original models in both classification
accuracy (the average, max, and min values of classification
accuracy) and explanation assessment (the average and max
values of RMSE). The result verifies that this study is robust to
sampling variability.
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5. CONCLUSIONS

This research aims to improve deep learning models in forestry
based on model explanations and corresponding expertise. Based
on the review of relevant studies on deep learning applications
in forestry, XAI methods, and FUL methods, we proposed
a new research framework which includes consideration of
explanations and expertise produces a reliable model in actual
tasks. To prove our point, we designed and performed three
experiments for various training tasks based on plant leaf data.
The qualitative and quantitative comparison of accuracy and
model explanations shows that the predetermined annotation
matrices (i.e., expertise) can guide and improve deep learning
models. For all three experiments, the classification accuracy
is increased (up to 4.6% in a 10-class classification task)
when considering expertise, and the improvement in model
explanation is also reflected by three indexes of explanation
assessment (i.e., RMSE, CosineS, and PIP). Besides, we also
discussed the impact of outlier data and sampling variability on
this study.

This research highlights the important role of model
explanations and expertise for deep learning studies in forestry,
especially with the growing impact of artificial intelligence
and big data and the ever-increasing utilization of deep
learning methods in this field. Furthermore, it serves as a
reference for relevant studies. It should be mentioned that
the masks we used were relatively simple, therefore we can
expect the deep learning models to have an even greater
improvement with higher quality expertise. Our experiments
consisted entirely of image classification tasks in this study.
The idea of using explanations and expertise to improve
deep learning models can also be applied in other tasks
such as time-series forecasting; all that is required is to
utilize the available XAI and FUL methods, or design new

ones. We intend to extend the application scenarios in
the future.
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