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Abstract

The high energy consumption of HPC systems is an obstacle for ever-
growing systems. Unfortunately, energy consumption does not decrease lin-
early with reduced workload; therefore, energy conservation techniques have
been deployed on various levels which steer the overall system. While the
overall saving of energy is useful, the price of energy is not necessarily pro-
portional to the consumption. Particularly with renewable energies, there
are occasions in which the price is significantly lower. The potential of sav-
ing energy costs when using smart contracts with energy providers is lacking
research. In this paper, we conduct an analysis of the potential savings when
applying cost-aware schedulers to data center workloads while considering
power contracts that allow for dynamic (hourly) pricing.

The contributions of this paper are twofold: 1) the theoretic assessment
of cost savings; 2) the development of a simulator to replay batch scheduler
traces which supports flexible energy cost models and various cost-aware
scheduling algorithms. This allows to approximate the energy costs savings
of data centers for various scenarios including off-peak and hourly budgeted
energy prices as provided by the energy spot market. An evaluation is con-
ducted with four annual job traces from the German Climate Computing
Center (DKRZ) and Leibniz Supercomputing Centre (LRZ).

*Corresponding author

Preprint submitted to Sustainable Computing December 15, 2018

The final publication is available at ScienceDirect via the DOI 10.1016/j.suscom.2019.04.003
1/46



The theoretic analysis indicates a cost savings for 4-8% when shutting
down unused client nodes, and 6-20% with hourly cost models and optimal
scheduling. The experimental validation of a practicable scheduler increases
the accuracy against the theoretical best case analysis. As expected, a cost-
efficient scheduling algorithm that is fed with the information about future
energy costs shifts the jobs to the timeslots where the job execution is cheaper
and reduces the energy expenditure, yet increases the waiting times of pend-
ing jobs. However, the expected savings for this effort are not justifiable
compared to the simple strategy of turning off the unused nodes. Addition-
ally, we compare the cost savings to the total costs of ownership showing that
smaller systems with on-demand provisioning yield better cost efficiency.

Keywords: HPC, energy-efficiency, cost-aware scheduling, cost savings,
spot market, discrete event simulation

1. Introduction

The interest in power reduction is manifold. Product manufacturers are
interested in extending the lifetime of its battery while simultaneously re-
ducing the device size and extending the set of supported features, making
low-power integrated circuit design a key. In environments such as High-
Performance Computing (HPC) data centers - with large-scale systems con-
nected to a power cord, the dependence on fossil fuels, production of high
carbon footprints, ever-increasing energy-consumption and associated costs
lead to the necessity of low-power solutions for all the building blocks of a
modern HPC data center, involving electronics and the supporting software.
According to a June 2016 report from Lawrence Berkeley National Labora-
tory [1], the U.S. data centers are estimated to consume around 73 billion
kWh in 2020.

This growing power consumption tendency can also be seen in Europe.
Figure 1 shows the trend of the energy costs at the Leibnitz Supercomput-
ing Centre (LRZ) from 2000 till 2017 including an estimate for 2018 and for
2019. As can be seen, the energy costs keep rising, reaching almost 7 M€ for
2016. This increase includes: (i) the rise in electricity prices from 0.07€ in
2000 to 0.157€ in 2016 for 1 KWh (which, after a drop to 0.145€ in 2017",

!Explaining the descend in energy costs for 2017 as shown in Figure 1.
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Figure 1: Trend of energy costs for LRZ from 2000 till 2017, and prediction for 2018, 2019

rises again to 0.180€ in 2018), as well as (7i) the rise in the power consump-
tion of the deployed HPC systems. Even though new generations of HPC
systems provide better power efficiency, i.e., better performance/watt ratio,
the density and overall performance of these machines improve substantially
and an overall increase in the energy consumption - which is about 42 MWh
(of which 29 MWh stem from the HPC systems) for LRZ in 2017.

All these make high-performance design and energy-efficient design in
many ways synonymous. Energy-efficiency and cost-efficiency are not the
same; energy-efficient data centers may have a reduced scientific output but
cost-efficient systems may waste energy while maximizing scientific output.
This paper focuses on cost-efficiency, but it links these topics when discussing
energy contracts. Utility providers (energy suppliers) regulate the costs de-
pending on demand and supply, and they provide monetary incentive to
contracts. This, in turn, stabilizes the overall utilization and optimizes the
power grid. This is particular useful as the power consumption of recent
HPC systems is highly depending on the executed application mix.

The power consumption of an HPC system at a given point in time is
mainly dominated by the power profiles of applications that are utilizing the
system at that particular time. Changes in these power profiles can occur in
a rate of milliseconds due to, e.g., application termination, start of a power-
intensive application-phase, that lead to high fluctuations in overall system
power profile.

Figure 2 shows the power consumption profiles of LRZ during a time
frame of five days in 2017. The topmost curve, labeled as P_DC| shows

3
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Figure 2: Power consumption profile of LRZ for a five-day interval in July 2017

the total power consumption of the data center; the second curve (counted
from the top), labeled as P_Cooling *10 shows the power consumption of
the cooling infrastructure in kW and multiplied by 10?; the third curve,
labeled as P_.SMUC, shows the power consumption profile of the deployed
HPC system SuperMUC (for both installation phases of the system: Phase 1
and Phase2). The area marked in green and labeled as T_WetBulb shows
the wet bulb temperature.

As can be seen, the variability of P.SMUC has a major impact on the
data center power profile P_-DC. But P_DC is also affected by the power
consumption of the cooling infrastructure - i.e., P_Cooling*10, thus showing
additional peaks and swings.

These fluctuations lead to the following affects: (i) the majority of cur-
rently existing contractual agreements with the utility providers do include
a penalty fee for violating the pre-defined power band boundaries (dashed
red lines on P_DC' power profile), and this fee can propagate to the entire
operational year bill, even if the power band was violated for a single time;
(71) in an Exascale system, these picks and swings might translate into fluc-
tuations of several MWs that might not only breach the safety limits of the
data center’s power infrastructure but they also impact on the stability of

2Scaled for illustrative purposes.
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underlying power grid.

Renewable power generations make the power grid prone to variability.
Figure 3 shows the solar power generations in Germany in 2017, depicting
the power variability of the grid due to the renewable energies. Thus, the
existing Multi-Petascale and future Exascale data centers — as major power
consumers — could contribute to the overall stability of the power grid via an
intelligent management of several MWs of power in short time.

The impact of demand and supply on fluctating prices can best be seen
on the energy spot market. For example, the European Power Exchange
(EPEX) spot market provides both the day-ahead and intraday energy trad-
ing schemes. In the day-ahead trading scheme, a blind auction is conducted
on the blocks of energy (at least 0.1 MW) for every individual hour of the
following day and the prices for the following day are fixed at noon. The
Physical Electricity Index (Phelix) is computed from the hourly contracts
— an example of the price development is shown in Figure 4. The intra-
day energy trading scheme supports contracts for fine-grained timeslots of
15 minutes, but this paper does not consider them further. Typically, energy
is significantly cheaper at base load than peak load; e.g., the energy price
list for 2018-02-13 indicates that the electricity costs 10 € per MWh until 6
am and around 40 € per MWh for the rest of the day. Depending on the
contract with the utility provider, such fluctuating prices can be exploited to
reduce the data centers energy costs.

The contribution of this paper is the investigation of energy expendi-
ture when applying various energy cost models and scheduling strategies to

Monthly solar power production in Germany in 2017
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Figure 3: Peak generation of solar energy in Germany in 2017. Source: Fraunhofer Insti-
tute for Solar Energy Systems [2]
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Figure 4: Phelix day-ahead auction price
Source: https://www.epexspot.com/de/marktdaten/dayaheadauktion

data centers. Firstly, a theoretical model is used to estimate the potential
gain of a scheduling strategy. Secondly, a discrete event based simulator is
developed to replay job traces from data centers and support novel models
for costs and scheduling. This allows us to estimate and quantify the bene-
fit of certain strategies implementations on a given production system, and,
therewith, guides RD&E efforts to make better use of HPC systems.

The rest of this paper is structured as follows: the state-of-the-art and
related work is described in Section 2. In addition, the HPC data centers
considered in this study and their energy contracts are described in Section 3.
In in Section 4, several alternative cost saving and billing strategies are de-
scribed and illustrated. Moreover, the theoretical model and the design and
implementation of the discrete event simulator is described in Section 5. The
simulation results from various schedulers and cost models are, however, pre-
sented in Section 6. This includes a discussion and assessment of the Total
Cost of Ownership (TCO). Finally, in Section 7, we summarize the paper and
describe the relevant actions required to realize the discussed cost savings.

2. Related Work

Related work can be categorized into metrics to quantify and assess en-
ergy consumption and costs, optimization techniques for energy efficiency,
scheduler strategies to minimize energy costs, and the simulation of HPC
workloads.

Energy/Cost metrics. As in[3], a metric is a measure for quantitative as-
sessment of a system and useful in system improvement and performance
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comparison. Energy efficiency metrics in HPC systems aim at higher com-
putational output while reducing the energy cost. Table 1 shows a number
of important energy consumption and cost metrics.

Energy-efficiency optimization techniques. There have been numerous re-
search on energy efficiency in HPC systems. The work in [10] gives an
overview of static and dynamic power management techniques useful to con-
figure the performance level of hardware components. Google [11] adopts a
machine learning approach that learns from the actual operational data and
predicts PUE. Shoukourian et al. [12] suggests another machine learning
approach based on recurrent neural networks for modeling the Coefficient of
Performance (COP) of a data center’s cooling loop and identification of key
parameters as well as their optimal configuration for a given point in time.

Metric Stands for Description
p Total data center energy divided by to-
PUE ower Usage tal IT energy. PUE=1 shows all power
Effectiveness . . :
is consumed in IT equipment [4].
IT-Power Usage Total IT energy divided by computa-
ITUE ) .
Effectiveness tional energy [4].
Total-power Usage Total data center energy divided by to-
TUE , .
Effectiveness tal computational energy[4].
CUE Carbon Usage Total Carbon emissions caused by data
Effectiveness center energy divided by IT energy [5].
DWPE Data center Workload | Energy efficiency of a given workload
Power Efficiency on a specific HPC system [6].
OPEX Operating Expenditure | Ongoing cost of running a system [7].
. . Expenditure on investment in long-
CAPEX || Capital Expenditure lived assets of a system [8].
TOTEX | Total Expenditure Made of OPEX and CAPEX [8].
TCO Total Cost of The purchase price plus the operational
Ownsership costs of an asset during its life cycle [9].

Table 1: Energy/Costs Metrics definitions
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Scheduler optimizations. In recent years, a number of research attempts has
been dedicated to developing energy-aware job schedulers in HPC systems
and cloud computing. In [13], an efficient energy-aware resource provisioning
and task scheduling algorithm is developed for the cloud environment. The
authors in [14] report a meta-scheduler in a cloud environment to dispatch
jobs to resources in different geographyical locations while minimizing C'O,
emissions but maximizing the profit and observing the Quality of Service
(QoS). An energy-cost-aware scheduler in [15] shows a cost-saving of 25-50%
by delaying low-priority workloads when energy prices are high, but ensuring
a rapid service to high-priority jobs. In a different approach presented in [16],
Mammela et al. suggests an energy-aware scheduler that reduces energy
consumption by 6%-16% by switching off idle nodes until the next request
becomes ready, without affecting turnaround time or waiting time of the jobs.
Roloff et. al in[17] argues that cloud environments can provid a higher
performance, up to 27%, and cost efficiency, up to 41%, than traditional
HPCs if they fit target applications. In [18], Shoukourian presents an energy-
wise optimal resource configuration for a scheduling system to adhere to a
predefined power cap and execution time constraint. This approach uses
adaptive models for estimating energy, average power, as well as execution
time of workloads with respect to different compute resource configurations
(e.g., compute node count, CPU frequency, etc.) [19]. The developed models
also account for node power variation [20] arisen due to the manufacturing
tolerances and variations during the fabrication of the integrated circuits.
In [21], a novel algorithm exploits scheduling methods dynamically for
real-time independent tasks in order to increase utilization and reduce en-
ergy consumption. A survey in [22] reports various applications of super-
vised, unsupervised and reinforcement learning on energy-efficient resource
management in cloud computing environments, including: adjusting CPU
frequency, power-aware server allocation, intelligent scheduling to turn off
unused servers, power-aware task scheduling and consolidation, load predic-
tion leading to optimal resource allocation, spatially-aware load placement
to reduce cooling costs, workload classification leading to load consolidation
and request forecasting to put unused machines to sleep. In [23], machine
learning predicts system behavior such as resource usage and task service-
level-agreement to help schedulers allocate tasks to hosts striking a balance
between revenue for executed tasks, quality of service, and power consump-
tion. T. Miyazaki [24] applies Bayesian optimization (BO) to reduce the
occupancy time in a graphics processing unit cluster system earning the sec-

8
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ond place in the Greenb00 list in June 2017.

Sitmulation of HPC and Cloud Workloads. It is important to analyze the
system response to new scheduling policies before putting them into produc-
tion. Cheng et al., in a recent work [25], applies reinforcement learning to
optimize energy costs for the cloud. They develop sophisticated models for
system and workload that apply for the cloud considering, e.g., dynamic en-
ergy consumption and realistic price models. Authors in [26] propose a means
of reproducibly and accurately determining the true impact of changes in
scheduling policy, resource configuration, and workload distribution. They
benefit from the Maui Scheduler for simulating and producing statistics to
analyze the impact of an immense array of real world system configurations,
policy sets, and workloads. Authors in[27] introduce the Cluster Discrete
Event Simulator (CDES) framework as a strong candidate for HPC work-
load simulation. This framework can take system definitions, multi-platform
real usage logs and can be interfaced with any scheduling algorithm. The
paper states a 95% accuracy against a production level HPC system.

Our work differs from previous works as we incorporate hourly energy
cost models and investigate alternative scheduling strategies and policies for
reducing the energy-costs at the scheduler level. While the work from cloud
providers shares similarities, it differs by the applied workload, HPC work-
loads run tightly coupled on multiple nodes but are loosely dependent on
other jobs, cloud workloads can be modeled as DAGs of tasks run on individ-
ual servers. We explore the energy and cost savings of alternative strategies
— theoretically and practically for two data centers running HPC workloads.

3. Site Descriptions

The following two HPC systems are considered in this article.

3.1. Mistral

Mistral is the high-performance computer of the German Climate Com-
puting Center (DKRZ). It was procured in two phases; in Phase 1, 1529 Intel
Haswell E5-2680 nodes with two processors each were installed. Additionally,
several handful of additional nodes serve as login and pre/post-processing
nodes, about 20 nodes are equipped with GPUs. In Phase 2, additional 1750
nodes with Intel Broadwell CPU were installed, these Phase 2 nodes are not
considered in this paper. The nodes are interconnected with an Infiniband

9
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FDR fat-tree topology using a 4:1 blocking factor, i.e. the bisection band-
width of the overall system is limited to 1/4 of the 6000 MiB/s throughput
provided by each link. DKRZ hosts one of the biggest storage systems with
about 53 Petabyte of storage in two file systems and a tape complex providing
75,000 slots.

15% of the compute nodes are air cooled mostly with water-cooled rack
doors. Other nodes are hot water cooled with a maximum inlet temperature
of 38°C3. In the main cooling circuit, water is pumped up to the roof utilizing
free cooling; this is sufficient in Hamburg for nearly all days of the year. A
rack has its own water circuit internally driven by two redundant pumps and
is connected via a heat exchanger to the main circuit. In this setting, the
directly liquid cooled nodes of the supercomputer itself achieved in 2016 a
PUE of 1.03 (the average PUE across the whole infrastructure is 1.19).

Mistral compute and storage for both procurement phases consume in
average about 1.15 MW. The storage and network accounts for 250 KW. This
includes three Mellanox switches backing the fat-tree network (about 30 kW).
The water pumps account for 5 to 10kW and the dry coolers on the roof
between 3kW (winter) and 10kW (summer). We assume the first and second
phase consume each half of this power.

3.2. SuperMUC

SuperMUC, the flagship system of Leibniz Supercomputing Center (LRZ) [28],
consists of two installation phases with an aggregated peak performance of
6.8 PetaFLOPS (= 6.8 - 10'® Floating Point Operations Per Second) [29]
having a total of 3.4 MW average power consumption [30]. SuperMUC is a
GCS (Gauss Centre for Supercomputing) [31] Tier-1 system and one of the
PRACE (Partnership for Advanced Computing in Europe) [32] Tier-0 sys-
tems. It is the first High-Temperature (ASHRAE W4 chiller-less [33]) Direct
Liquid Cooled (HT-DLC) system installed worldwide [34]. Its active compo-
nents — e.g., processors, memory — are directly liquid cooled with an inlet
water temperature of up to 45 °C.

SuperMUC Phase1 is an IBM [35] iDataPlex DX360M4 Intel Sandy
Bridge system, installed in 2012, having 3.18 PetaFLOPS [29] theoretical
peak performance and an energy-efficiency rate of 0.85 GFLOPS/W [36].

3The temperature is regulated depending on the outside conditions between 20 and
40°C, for safety reasons, DKRZ choose 38°C.
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Phase 1 consists of 18 thin node islands, where the compute nodes within
an individual island are connected via a fully non-blocking Infiniband net-
work (FDR10). These 18 thin node islands contain 9216 compute nodes,
where each node is equipped with two 8 core Intel Sandy Bridge-EP Xeon
E5-2680 8C [37] processors.

In SuperMUC Phase 2, additional 3072 nodes were installed in 2015. Due
to a similar nature of the simulation presented later and for the provision
of an in-depth analysis, this paper considers only the data related to the
Phase 1 application queue. Both phases of SuperMUC have a high speed
interconnect between the islands, which enables a bi-directional bi-section
bandwidth ratio of 4:1 (intra-island/inter-island). Phase 1 and Phase?2 use
the IBM LoadLeveler [38] as a resource management and scheduling system.

3.3. Energy Pricing Policy at DKRZ

DKRZ bought electricity from the stock market based on a fixed energy
consumption and expenditure policy in 2016 and 2017. This envelop enforced
the power consumption to stay constant within a small variation margin
and, under this condition, the energy cost was fixed for the whole year.
In retrospect, however, the average energy price can be calculated as the
total energy expenditure divided by the total consumed electricity, which is
as follows: Average Energy Price (2016) = 14,50 ¢/kWh. The aggregated
energy cost would result from some components mainly energy cost (12%),
grid cost (2%), green energy (50%), and taxation (15%).

3.4. Energy Pricing Policy at LRZ

LRZ has a power band contract, meaning, it can consume a variable
amount of power in a specified range without any penalties (leading to a
variable amount of energy consumed during the year). Therefore, the final
energy price depends on the total consumed energy. LRZ purchases a basic
power band for one or multiple years at the European power stock exchange.
Hence, the power price is determined by the European stock market. The
price per kWh can vary slightly depending on the consumed energy (more
energy consumption can lead to a lower price per kWh). The contract has
two major cost items:

(a) connection fee — charged by the owner of the physical power lines, fixed

charges per kWh. A significant fraction of the fee can be saved if power
peaks are minimized;
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(b) energy consumption for complete year - charged by the power provider,
price of used energy, depends on final (yearly) energy consumption (kWh)
and maximum power usage.

If the energy consumption exceeds 10 GWh per year, special parts of the
supply contract can be applied. For example, if the fraction of the total
energy consumption per year to the maximum power consumption per year
exceeds 7000 h, the amount of the connection fee (a) can be reduced. More
details concerning the LRZ power contract and possible TCO optimization
can be found in[39]. At LRZ a huge cost factor to OPEX is the energy
consumption. LRZ uses energy-aware scheduling to improve the energy effi-
ciency [40].

4. Cost Saving Strategies

The primary goal of this paper is to identify possible ways of maximizing
the scientific output while minimizing the cost expenditure. This section
discusses different strategies for achieving this goal.

A traditional resource management and job scheduling system optimizes
two goals: utilization of the data center and user waiting time, defined as a
time difference between job completion and job submission, i.e., tcompieted —
tsupmit- During recent years various power capping techniques have been
implemented to ensure to keep the system usage within a given power band
and prevent possible power overloads[41, 18]. Similarly, optimization of
Energy-to-Solution [42] and the problem of energy capping has been in-
vestigated [20)].

With respect to power, aspects involving the power grid are relevant as
theoretically energy consumption can be adjusted rather quickly in a data
center. This can increase the stability of supporting power grid for green
energy sources balancing energy or minute reserves. Besides scheduling of
applications, an adaption of the CPU frequency per application offers a quick
adjustment of used energy. When needed, applications can be run at higher
frequency which consumes more power and leads to optimal runtime, or at
lower frequency to consume less power.

An additional cost saving factor is that heat created by the data center
could be re-used, for example, via the help of adsorption chillers, this is not
further discussed in this paper, though. Let us look at possible strategies in
more detail.

12
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4.1. Alternatives to Procurement and Hardware Control

The list below outlines the possible set of cost-saving strategies and ac-
tions when system underprovisioning is possible, i.e., providing less system
capacity than needed for minimizing the cost expenditure. The degree of un-
derprovisioning is a decision to be made at design time or when additionally
deploying new systems (or system components) based on the estimation of
utilization spikes and the penalty costs with regard to the risks analysis of
not adhering to certain service-level agreements.

1. Procure a system for normal operational scenarios
This strategy suggests to design/deploy a system for meeting mean
utilization requirements. For data centers that exclusive jobs occupied
in average only 80% of the cluster during their lifetime, it might be
possible to procure, for example, 85% of the hardware. However, this
will increase the waiting time during spikes of user requests. Segments
dedicated to cloud computing can be used for covering the rest, out-of-
band, requirements. This will ensure the homogeneity of waiting time
for users. If the waiting time increases too much, ad-hoc solutions, like
purchasing, for instance, 1% of additional hardware can be considered.

2. Incremental provisioning

Typically, after the inauguration of a new cluster, it is not utilized
completely but the demand for resources grows slowly. Similarly to the
previous strategy, we may start with a smaller cluster and incrementally
grow the size depending on the user needs. This is more a theoretical
scenario as the incremental provisioning requires policies for acceptance
and dynamic integration of new resources into the existing resources.
This elasticity is a strength of the cloud.

3. Send client nodes to sleep mode (turn power off)
Power can be saved by turning off unneeded resources as nowadays
supported by many resource management systems. This however, adds
certain latency and imply additional challenges: Usually, bringing up a
node after deep sleep mode can be challenging since network protocol
synchronisation can be adversely affected by constant drop-off of nodes
in the network. Additionally, if several compute nodes were powered-off
within the same time window then, in some cases, this could potentially
lock-up the corresponding file system like GPFS for other users while

13

13/46



the recovery processes take place?. This could cause failures of other
jobs on different compute nodes as they exceeded their own timeouts
for I/O completion [43]. At future multi-Peta/Exascale level this might
also cause thrashing due to the irregular node booting failures when
significant amount of compute nodes are being provisioned. A potential
solution to reduce waiting time, issues, and booting is suspend to RAM
that is nowadays common in desktop systems. Still, this strategy is
rarely used in data centers.

. Adjusting the processor frequency

The data center utilization rate can be increased by reducing the op-
erating frequency of the processors, for example, to the lowest possible
value (typically, 1.2 GHz). This will also allow to mitigate some of the
possible power spikes caused by power-hungry applications. This could
be applied automatically, for example, when a scheduler observes few
pending jobs.

. Support power grid stability

Last, we can adjust the power consumption of a data center depending
on the power availability by utilizing the above mentioned actions/s-
trategies. Currently, power can be varied by an estimated 50% (max-
imum CPU frequency vs. lowest CPU frequency). For an Exascale
data center with a 35 MW average power consumption, this variability
can be estimated as high as 25 MW at peak and 18 MW at average
power consumption. Since power transitions can be nearly instanta-
neous, Exascale data centers are one of the few large power consumers
with flexibility in their power profile.

4.2. Data center billing strategies

This subsection provides an overview on various billing strategies provided

by local utility providers (e.g. Stadtwerke Miinchen GmbH [44], E.ON SE
[45], etc.) and/or companies operating national grid (e.g. TenneT [46]) as
well as outlines their exploitation range.

1. Fized cost per kWh (24h flat rate)

This policy indicates that data centers may pay a single unit rate for

1A GPFS (General Parallel File System) filesystem would need to start a recovery
process if a compute node was not shutdown properly
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electricity independently from the time of a day, power consumption,
or any other constraint. There is no particular optimization available
to reduce costs with this default mode.

2. Base/Peak rate
These types of policies indicate that data centers get a reduction in
electricity price for certain time slots within a day with low load, i.e.,
depending on a given electricity rate, which can be a day rate (e.g.,
ranging from 08:00am - 1:00am) or else a night rate®).

The resource scheduling and management system can take advantage
of this electricity rate policies by shifting power-hungry (low priority)
workload to off-peak hours potentially even shutting down unneeded
resources. Thus scheduling only high priority/critical workload (desir-
able with low power/energy consumption rate) during the peak hours
and deferring low priority workload (having high energy consumption
rate) to off-peak hours when the cost of electrical power is cheaper.

3. Stock market

Instead of relying on fixed contractual terms, data centers may purchase
power directly from the stock market (refer to the introduction for a
description). While this strategy itself may be cheaper than a fixed unit
rate, it offers more room for optimization than the base/peak model.
Typically, the energy costs of the following 24 hours (they vary for each
individual hour) are announced a day in advance allowing to delay jobs
to cheaper periods of time, or to control the CPU frequency.

4. Stabilizing the grid with green energy lookahead and weather dependency
This variant does not aim to necessarily optimize costs but stabilize the
power grid — this may lead to a cost deduction as well.

The renewable energy sources like wind, solar, and hydropower are
slowly phasing out fossil fuels (oil, coal, and natural gas) and further
transforming electricity by making its greenness variable throughout
the day, where the amount of green power is increased with more windy
and sunny weather. In order to support for a renewable energy source
based operation of the target system, the dynamic of the available
power must be taken into account, since in the considered case the

5During the summer time, this ranges are typically shifted by an hour.
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available portion of the power will change with the time. The weather
forecasting tools, that help in identifying greenest and dirtiest times of
day, can further assist in achieving this goal.

Besides these general billing strategies, there are orthogonal options avail-
able for each of them:

1. Power band

These types of policies usually indicate that a data center can consume
a variable amount of power in a specified range without any penalties
leading to a variable amount of energy consumed during the year. The
vast majority of these contracts includes a penalty fee for violating the
pre-defined power band boundaries, which can propagate to the entire
operational year bill, even if this predefined power band is violated only
a single time [47].

2. Fized energy budget
Some contractual agreements may include a fixed energy budget for
the entire system life-time® which shifts the risk of energy costs from
the data centers to the vendor. These contracts are usually negotiated
with system vendor or with the corresponding power company. The
challenge here is to maximize the scientific output within the given
budget or alternatively pay the extra energy bill themselves.

Additionally, the majority of HPC users/clients are currently being charged
according to the time usage of certain sets of compute resources. This policy
can be modified to include costs or energy-driven charging policies by intro-
ducing energy budgets for users. This budget can be tracked via the help
of a well-established in community metric: Energy-to-Solution [42]. Cost-to-
solution extends the notion by accounting for the total expenditure.

4.8. Scheduling Strategies

The items below outline some scheduling strategies and their variations
with regard to energy/power consumption awareness.

6Other timely limited variations of this type of contract are possible.
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1. First Come, First Served (FCFS)
First Come First Serve, also known as First In, First Out (FIFO) al-
gorithm simply queues and dispatches application for execution in the
order that they arrive in the queue.

2. Job Delaying
This strategy ensures to delay certain types of jobs (for example power-
hungry ones) for certain time period (for example, off-peak hours).

3. Job Delaying With Node Shutdown
This strategy ensures to delay certain types of jobs and to power-off cer-
tain compute nodes for minimizing the cost expenditure during certain
time frames.

4. Green Job Advancing/Forwarding
This strategy ensures to advance certain types of jobs (for example
power-hungry ones) when the amount of green power is maximized
(see Subsection 4.2).

5. Minimize Power Peaks
This strategy ensures to schedule jobs in a way that system power peaks
are minimized. This will allow to adhere to predefined power bands (see
Subsection 4.2). Additionally, this strategy can help to achieve a flat
energy profile is achieved, which in turn can lead to cost-saving bonuses
granted by the power utility provider. DVFS-like techniques[40] can
further assist in achieving this goal.

6. Priority Based System Utilization

Assume that the resource management system supports for a priority
based scheduling of various applications with different power consump-
tion profiles and the data center infrastructure is designed for providing
the power capacity for near peak usage for high priority applications.
Assume further that these near peak operating applications are served
only for a fraction of a day, leaving the dedicated power capacity under-
utilized for the rest of the time. During these time fractions, the low
priority applications can be executed for increasing the mentioned uti-
lization rate.

We modeled and analyzed a subset of the aforementioned strategies. Note
that there exist many alternative scheduling algorithms particularly targeting
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time sharing or cloud workloads that are not suitable for our scenario with
tightly coupled HPC workloads.

5. Design

This section focuses on the design of the discrete event simulator but
also includes a theoretical model for optimal energy saving. The simulator
is a discrete event simulator build with Python3”, it reads traces of historic
job execution generated by schedulers like SLURM. It supports alternative
scheduling and energy policies. The simulator is started via selection of a
system model and a trace file to execute; it then generates a file with the
recorded events that can be used for inspecting utilization and waiting times.

5.1. System Model
The system model for the simulator and the theoretical model is based
on the following characteristics:

e Nodes: number of nodes provided by the system.
e CPUs per node: number of microprocessors per node.

e Idle node power: fixed energy consumption of a node in Watts when
the node is idle.

e CPU power: typical energy consumption per CPU when utilized. Note
that it is replaced with actual measured energy consumption for LRZ.

e Infrastructure power: energy consumption of generic infrastructure
components like network switches, storage, etc. that are shared among
all nodes and added to the per node idle power.

e System costs: this covers the one time investment for the machine
procurement and potential infrastructure changes.

e Annual costs: the estimated annual costs of managing the supercom-
puter. This covers OPEX, i.e., running costs of the data center.

Based on this model, the TCO of a system over the lifetime is:

TCO = system costs + annual costs - lifetime + energy costs (1)

"It is available at: https://github.com/JulianKunkel /schedsim
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5.2. Energy Models

Provided energy models are:
e Fixed-price: a configurable fixed price per kWh is assumed.

e Base-peak: two periods can be defined each with its own energy costs,
e.g., between 6 am and 10 pm one cost otherwise another.

e Hourly costs: for each hour and each day the energy costs can be defined
and read from a trace file. Since the stock market price is provided in
hourly granularity, this allows a direct mapping.

5.8. Scheduling Algorithms

As the main focus of this paper is the analysis of energy and total costs,
we provide basic scheduling strategies that enable a comparison. Firstly, for
comparison purpose, we use a theoretical approach.

Optimal. This is a mathematical approximation of the best case where we
know the costs of the whole year, we fill the machine completely during the
cheapest hour until the whole workload is done. The base system either
remains idle for the more expensive periods (implying costs for the infras-
tructure power), or it is completely shutdown. An effective mean cost is
computed when using the cheapest hourly costs during the runtime (see
Listing 1). This algorithm is an oracle, as it requires to know the future
price of energy and all jobs. It also implies no shutdown and restart delay
and costs, hence it is an upper bound for any cost savings.

Listing 1: Optimal (pseudo) algorithm

# Input:
# utilization of BackfillShutdownDelay
# endtime of BackfillShutdownDelay

costs = 1list of all hourly cost data until endtime
costs.sort ()

hoursUtilized = costs.len() * utilization
effectiveCostsUtilized = first hoursUtilized elements from costs
effectiveCostsIdle = remaining elements from costs

return mean (effectiveCostsUtilized), mean(effectiveCostsIdle)
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The scheduler is responsible to select the next jobs for execution from the
job submission queue. The following basic scheduling strategies are imple-
mented in the simulator:

e FIFO: the traditional first-come first serve (FCFS) strategy.

e Backfill: FIFO with backfilling. Either the first job is dispatched or it
iterates over the next 1000 pending jobs and dispatches the next job
that meets the criteria: it fits in terms of requested nodes and does not
delay the execution of the first job.

e BackfillDelay: this is a variant of FIFO with backfilling but much easier
to compute. The condition to check for a delay of the first job is not
checked, thus, this strategy may lead to a delay of the next job. The
algorithm is illustrated in Listing 2.

e BiggestFirstBackfill: schedule the pending job which requests the most
number of nodes first. This is a heuristic.

e LongestFirstBackfill: schedule the pending job with the longest execu-
tion time first. This is a heuristic.

e BackfillShutdown™: these are two variants of Backfill and BackfillDe-
lay that shutdown idle nodes and restart them if needed. Shutdown
and restart are optimistically performed immediately, in practice, this
would take a couple of seconds (with hibernation).

Listing 2: BackfillDelay scheduling algorithm

checkedJobs = 0
for job in pendingList:
if job.nodes < availableNodes:
checkedJobs++
if checkedJobs > backfillLength:
return
continue
dispatchdJob (job)

The next scheduling strategies aim to optimize the schedule by consider-
ing the future energy costs. All of them shutdown idle nodes identical to the
BackfillShutdown algorithm. They assume the energy costs are specified in
a granularity of an hour and the number of hours they explore is specified
by the look-ahead argument (e.g., 12 hours).

20

20/46




e EnforceCheapEnergy: This FIFO scheduler may delay the execution of
a job. It computes the energy costs for running the job (according to its
actual runtime) in various intervals in its look-ahead window chooses
the cheapest execution window. Note that in practice one would not
exactly know the future runtime of a job but would use the requested
wallclock time.

e PriceAware: It computes the energy costs for running the job in various
intervals in its look-ahead window but also considers the energy costs
for leaving infrastructure idle. The algorithm computes when the first
pending job should be run once, then suspends itself until the time is
met (Line 33; not accepting further wake ups in between) to prevent
that job execution is moved again. The algorithm is illustrated in
Listing 3. Note that the boundary cases for the first/last interval are
not completely shown.

e PriceAwareDeadline: Variant of the PriceAware algorithm, it enforces
the dispatching of a job if the waiting time is already bigger than the
look-ahead window. In contrast, the algorithm now recomputes when
the first pending job is computed every time it is called (Line 33 is
changed; new jobs cause a reschedule), but also changes Line 6 by
adding: or(time — job.submissionTime) < lookAhead. Thus, jobs are
not delayed beyond the look-ahead window after their submission time.

6. Evaluation

6.1. Configuration

The used characteristics according to our system model are shown in
Table 2. For DKRZ, The energy consumption per node has been measured
using HDEEM [48] on an idle node (70 W) and a node running the COSMO-
ART [49] model at 2.5 GHz on both microprocessors (260 W/Node). For
the infrastructure, the overall power consumption of storage, network, and
cooling infrastructure (260 kW, see Section 3, cooling is 10 kW, therefore, we
included it) is equally accounted to both phases (but we investigate traces of
Phase 1 system only).

In case of LRZ, the infrastructure power (which as was mentioned above
covers supportive energy costs such as network switches and storage, that are
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Listing 3: PriceAware scheduling algorithm

# time is the current simulation time
for job in pendingList:
if job.nodes > availableNodes:
return
# Schedule jobs that do not fit into look ahead immediately
if job.runtimeHours + 2 >= lookAhead:
dispatchJob (job)

return
# Energy consumption when we leave the nodes empty
nodesIdleP = idleNodePowerConsumption % job.nodes
jobConsumption = job.consumption + nodesIdleP
# Compute price for dispatching now
costsToRun = 0

for jobHour in 0, Jjob.runtimeHours:
costsToRun += energyCost (time + jobHour) =
jobConsumption * Jjob.durationThisHour
cheapestPrice = costsToRun
cheapestTime = "now"
# Now what happens when we start at the beginning of
# each future hour in our look ahead
idleCostsSoFar = energyCost (time) % secondsThisHourRemain
* nodesIdleP
for hour in 1, lookahead:
if idleCostsSoFar > cheapestPrice:
# already the idle costs are higher, we can stop searching

break
costsNow = energyCost (time + hour)
costsToRun = idleCostsSoFar

for jobHour in 0, job.runtimeHours:
costsToRun += energyCost (time + hour + jobHour) =
jobConsumption * Jjob.durationThisHour
if price < cheapestPrice:
updateCheapestPrice/Time
idleCostsSoFar += energyCost (time + hour) % nodesIdleP
# Special case for last hour (not shown)
if cheapestTime != "now
suspend scheduler until (cheapestTime)
dispatchJob (job, cheapestTime)
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Variable Mistral Phase1 | SuperMUC Phase 1
Number of Nodes 1529 9216
Idle node power 70 W 49 W
CPUs per Node 2 2
CPU power 95 W Trace APC
Infrastructure power 130 kW 176.5 kW
Costs system 16.5 M€ 83 M€
Annual costs 4 M€ 16 M€

Table 2: Configuration of the system characteristics

always operational) was obtained via the help of intelligent Power Distribu-
tion Units (PDUs), whereas the idle node power and application traces rely
on paddle card readings [18] that are obtained through PowerDAM moni-
toring toolkit [50]. The mean power of the jobs used by the traces is the
Average Power Consumption (APC) as reported by the measurements. The
presented energy costs for LRZ cover storage and network but not the costs
for cooling.

Note that neither the cent exact price is not necessary for the analysis
conducted in this paper nor can it be determined with the data available
from the center monitoring systems. The annual OPEX cover employees and
are estimates based on the number of employees (75 for DKRZ and 150 for
LRZ). Costs of the systems are according to press releases, however, as we
simulate only DKRZ’s Phasel system, we budget for the half annual and
system costs.

6.2. Energy-Cost Models

The fixed-price model uses 14.5¢ per kWh as a price for both systems.
We adjusted the mean energy costs of all other models to result in the same
price as this makes it easier to compare all models — we can assume the
resulting energy cost is similar for all models.

For the base/peak load model, the peak time is between 6 am and 10 pm
and the price is 16.675¢ and 10 ¢ per kWh for peak and base load, respec-
tively. The hourly cost model is more complex and as follows.

Hourly Energy Costs. Using actual data from Phelix for this cost model is
not useful. Firstly, the energy provider will not give the auction price to the
customer but has to add further costs to it like taxes; secondly, a comparison
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price in cents
price in cents

time (day) time (day)

(a) T1 (b) T2

price in cents
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time (day) time (day)

(c) T3: all 500 days (d) T3: first 96 hours

Figure 5: Hourly energy costs simulated

with the other price models would be difficult as the price level differs signif-
icantly. Therefore, three timelines (T1-T3) have been synthetically created
for 500 days (some scheduling models run longer than 370 days) using au-
toregression (see the Equation 2 and Equation 3 below)®. The first 24 hours
are created using a random number, then an autoregressive model is used to
compute the next values. After the initial series is created, its mean value
is adjusted to 14.45¢ per kWh. Visualizations of the created timeseries are
shown in Figure 5.

As can be seen from Figure 5, the dynamics and overall behavior of the
three timelines differ; T2 is more static and has a smaller dynamic range than
T1. T3 is created with the same rules as T2 but adds after the creation on
each day a cost offset to mimic the base and peak prices; between 6 and 22

8The data is available in https://github.com/JulianKunkel /schedsim-data
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by 10 ¢ and between 10 and 11pm by 3 ¢. It covers the local price difference
of the day/night cycle but also inherits the dynamics from T2.

T1t] =0.25-sin(t) + 0.8 - Y[t — 1] + 0.2 - Y[t — 24] + rnorm (2)

T2t =04-Y[t—1]+04-Y[t —2]4+0.2-Y[t —24] + 0.5 - rnorm  (3)

6.3. Used Traces

The traces used for the following analysis are:

e DKRYZ 15: this trace starts at 2015-08-15 of DKRZ’s Phase 1 system.
e DKRZ 17: This trace starts at 2016-12-30.
e LRZ 14: This trace starts at 2014-01-01 of SuperMUC’s Phase 1.

e LRZ 17: This trace starts at 2017-01-01 of SuperMUC’s Phase 1.

Each trace covers a one year period of job execution. The trace file
contains the submission time as we are interested to investigate waiting times.
In the LRZ 17 trace, there are few jobs that are started at the beginning of
Dec. 2016, this leads virtually to a longer period (391 days instead of 365)°.

6.4. Understanding Energy Saving Potential

Firstly, Table 3 shows for each trace general characteristics: the average
system utilization, the runtime of the trace (roughly a year), then the mean
price for the base-peak and hourly model, and, finally, the implied energy
costs. Note that downtime of nodes or the whole systems is not considered in
the current execution model. As a data center needs maintenance for a few
days (at least) a year, this impacts pending jobs (they are stalled) and delays
submission of new jobs. Additionally, the priority of big jobs can cause idle
time on nodes that are already blocked for the future execution of a big job.
Therefore, the utilization can never reach 100%.

9 Authors believe that the error induced by simulating from the first submission day is
acceptable.
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The mean price is simply the mean cost over the runtime of the trace.
Runtime and utilization is computed using the FIFOShutdownDelay sched-
uler'. As the power models are generated to have a mean of 0.145¢ per
kWh, the listed mean price is close to that value. T3 is a bit lower, the
reason is that the price rises after the first year of the trace (see Figure 5c¢).
Also, interestingly T3 contains a short period of time where the energy costs
are negative. This actually happens in practice when there is an excess in
energy.

The total energy consumption for the different trace is distributed across
the subcomponents in Table 4. The table shows the total consumption of the
infrastructure, the base costs for all nodes (empty nodes), and the additional
job energy consumption. The job costs for LRZ is actually computed from
the trace using the average power consumption as observed while for DKRZ
the approximative model is used.

Next, we explore the potential benefit in terms of actual energy and cost
savings for the different traces.

Energy savings when turning off the clients. Firstly, we look into the energy
savings when turning off client nodes when they are unneeded. This can be
easily computed with the utilization of the system and the infrastructure en-
ergy consumption. Again we use the average costs for a trace. Table 5 shows
the relevant data: the energy consumption of the trace when leaving the
system always on and when shutting down unneeded nodes. The shutdown
of unneeded nodes is expected to make up for

(1 — Utilization) - IdleNodesEnergy - MeanPrice (4)

The difference is the saved energy for shutting down client nodes is in the
order of 5-10% of the overall energy consumption. This accumulates to 120-

10Tt will be shown that these values arevery close to the optimal runtime and energy
consumption values.

Trace Utilization | Runtime | Energy|| MeanPrice per kWh in€ Energy costs in k€

in days|in MWh||BasePeak| T1| T2| T3||BasePeak| T1| T2| T3
LRZ 14 0.786 367 12,941 0.145(0.145|0.145|0.131 1,870/1,876|1,874 (1,699
LRZ 17 0.738 391 14,189 0.145(0.146 | 0.144|0.131 2,0502,064 |2,039(1,857
DKRZ 15 0.744 367 3,986 0.145|0.145|0.145|0.131 576| 578| 577| 523
DKRZ 17 0.832 367 4,214 0.145|0.145|0.145|0.131 609| 611| 610| 553

Table 3: Trace characteristics and base costs for energy
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Trace Total Jobs | Infrastructure | Node baseload

in MWh |in MWh in MWh in MWh
LRZ 14 |12,941.19 7,411 1,554 3,976
LRZ 17 |14,188.52 8,290 1,658 4,241
DKRZ 15| 3,986.09 1,901 1,143 941
DKRZ 17| 4,214.27 2,128 1,144 942

Table 4: Energy characteristics for the traces

Trace Energy in MWh Shutdown || Shutdown savings in k€ || Saving

Always on‘Shutdown Saved MWh BaseP.‘ Tl‘ T2‘ T3 in %
LRZ 14 12,941 12,090 851 123(123|123 112 6.6
LRZ 17 14,189 13,077 1,111 161|162|160 145 7.8
DKRZ 15 3,986 3,745 241 35| 35| 35 32 6.0
DKRZ 17 4,214 4,056 158 23| 23| 23 21 3.8

Table 5: Saving potential for the systems shutting down client nodes

150k€ for LRZ and across the different price models and to 20-30 k€ for
DKRZ which is significant. Note that the relative percentual benefit of saving
when shutting down the clients stays the same independent of the power price
model used as we use the average energy costs for each trace as this is an
approximative model.

Infrastructure power. Next, we explore the impact of the infrastructure power
consumption to the costs. Table 6 gives an overview of the saving potential
when turning off the infrastructure when the nodes are idle. The saving
potential in % is given relative to the absolute costs.

Optimal job scheduling. Finally, we explore the theoretic influence of the
optimal scheduling algorithm. Therefore, we compute with the optimal al-
gorithm the best and worst prices Table 7. In a nutshell, for the best price,
we uses the hour with the cheapest energy costs first (with 100% utilization)
until all computation is done. The mean for the remaining time intervals
with higher cost is the worst price that we have to pay to upkeep the infras-
tructure. Note that the optimal oracle primarily serves to understand the

Trace Energy in MWh Shutdown || Shutdown savings in k€ || Saving

Always on[ Shutdown | Saved MWh BaseP.‘ Tl‘ T2‘ T3 in %
LRZ 14 12,090 11,758 333 48.1(48.2(48.2| 43.7 2.6
LRZ 17 13,077 12,643 434 62.8163.2|62.4| 56.8 3.1
DKRZ 15 3,745 3,452 293 42.3(42.4]42.4| 384 7.3
DKRZ 17 4,056 3,864 192 27.8(127.9]27.8| 25.2 4.6

Table 6: Extra saving potential turning off infrastructure (during client idle time)
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Trace Optimal price in € ‘Worst price in €
BasePeak| T1| T2| T3||BasePeak| T1| T2| T3

LRZ 14 0.138]0.129|0.137|0.115 0.167]0.206|0.173|0.190
LRZ 17 0.137]0.126|0.135|0.111 0.167]0.201|0.169|0.186
DKRZ 15 0.137]0.125|0.136 |0.112 0.167]0.202|0.171|0.188
DKRZ 17 0.140(0.132|0.1390.119 0.167]0.210|0.176|0.193

Table 7: Average optimal and worst price depending on the cost model and trace utilization

Trace Client shutdown only || Client + infrastr. shutdown

BasePeak| T1| T2| T3||BasePeak| T1| T2| T3
LRZ 14 187(297|204|281 242|366 |262 345
LRZ 17 251|388(262|369 323(475|336 450
DKRZ 15 55| 86| 58| 82 104|145(108 137
DKRZ 17 36| 61| 41| 57 68|102| 75 94

Table 8: Cost savings in k€ with the optimal scheduling for the variable price models
shutting down client nodes (and infrastructure) compared to Table 3

upper bound of any smart scheduling. As we can see, if we the optimal price
is about 1 ¢ lower for T2 and about 2 ¢ for BasePeak, T1 and T3 — which is
about 10-20% of the energy costs.

Now, we apply our optimal algorithm oracle, we obtain an extra sav-
ing that depends on the utilization, cost model, and energy consumption.
Therefore, we consider the scenarios: turning-off-client nodes and turning of
infrastructure, too. When we turn off the infrastructure as well, we yield the
optimal price for the workload execution, it is computed as follows:

opt Price =Utilization - (InfrastructureEnergy + IdleNodeEnergy) (5)
- BestPrice + JobEnergy (6)

Hence with infrastructure, we obtain
optPrice + (1 — Utilization) - In frastructure Energy - WorstPrice  (7)

Otherwise, we achieve the best price during the workload execution but have
additionally to pay the worst price for the idling machine. Table 8 shows the
cost saving potential for the price-aware strategy compared to our original
costs.

Discussion of the theoretical benefit. An overview of the percentual saving
of all aforementioned theoretical models compared to our base costs is given
in Table 9. The table shows the percentual benefit compared to our base-
line with average energy costs for the traces (no optimization), the benefit
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Trace Shutd. Client shutd. + opt. schedule Shutd. || Client/infr. shutd. + opt. schedule
Clients|| BaseP. | T1 | T2 | T3 |[CL+Inf.|| BaseP. | T1 | T2 | T3
LRZ 14 6.6 10.0 15.8 10.9 16.6 9.1 13.0 19.5 14.0 20.3
LRZ 17 7.8 12.2 18.8 129 19.9 10.9 15.8 23.0 16.5 24.2
DKRZ 15 6.0 9.5 14.9 10.0 15.7 13.4 18.0 25.2 18.7 26.2
DKRZ 17 3.8 5.9 10.1 6.7 10.3 8.3 11.2 16.7 12.3 17.0

Table 9: Cost savings in k€ for the various models in percent compared to Table 3

for shutting down clients and infrastructure but with the default schedule
(average costs), and finally the application of the optimal algorithm.

Given these numbers, it becomes apparent, that shutting down nodes
(e.g., to memory) is an important aspect of reducing the power costs. Know-
ing fluctuating prices for a year in advance, an optimal schedule would be
able to reduce costs further by 5-10%. Particularly, the day-night cycle in T3
provides room for exploitation. However, this benefit can never be achieved
in practice as we do not know the hourly energy price of the stock market a
year in advance. The base-peak model reduce costs sufficiently as well and
is a practicable model as prices for base and peak are well known in advance
and negotiated with the power supplier. The simulation will allow to quan-
tify these numbers more accurately as it can consider the energy costs at a
given time.

Shutting down the infrastructure additionally when not needed would
reduce the costs further by 3% and 5% for LRZ and DKRZ, respectively. In
the latter case, the infrastructure costs are a higher fraction, therefore the
gain is higher.

However, as mentioned before, this benefit is in practice not achievable
as restarting the infrastructure is extraordinary time consuming and may
increase the hardware failures.

By assuming constant power consumption of the system, a naive estimate
of cost saving would be (1 - utilization) — hence about 25% for our utilization
figures. In general, the overall benefit is a bit lower than suggested, due to
the fact that CPUs need more power when under load. However, the cost
benefit of using an optimal schedule for the hourly cost models is relatively
close to this assumption.

6.5. Simulation Results

First, we discuss what is shown in the tables. An example for DKRZ with
the trace from 2017 is shown in Table 10. For different energy-cost models,
the table shows the scheduler configuration and the resulting performance

29

29/46



in terms of days the jobs run in the simulation (run days) — as the trace
covers roughly a year worth of workload, the overall utilization, the energy
consumption, energy costs, the energy saving relative to BackFillDelay!!,
and various waiting time statistics for pending jobs in minutes/days (the
quartiles' Q1, Q2 (Median), Q3, quantile 90 and 99, and the maximum).
The cells of the table have been colored, green is close to the best value,
yellow a neutral (worse) result and red usually a bad result.

The table contains a selection of data albeit we have produced most data.
Some aggressive schedulers that aim to conserve energy cannot be run suc-
cessfully because their simulated runtime for the one year workload exceeded
500 days — after which the hourly cost model has no data available. In
analysis, we pick FIFO and BackFillDelay as baselines for comparing the
performance of alternative scheduling strategies. FIFO is expected to deliver
a suboptimal waiting time for the users and should be considered as a upper
bound for waiting. In a subset of conducted experiments, the FIFOBack-
Fill and BackFillDelay performed similarly, so that we omit presentation of

FIFOBackFill.

6.6. Discussion of the Schedulers

Comparing non energy-aware schedulers. The schedulers BackFillShutdown-
Delay and Backfill, LongestFirstBackfill, and BiggestFirstBackfill perform
similarly to FIFO in respect to energy saving (look at fixed price). Biggest-
FirstBackfill and LongestFirstBackfill are able to reduce the waiting time as
they are expected to pack the jobs tighter than FIFO. Since Backfill and
BackFillShutdownDelay perform identically in respect to waiting times but
differ only in energy consumption, we only show BackFillShutdownDelay.
Also, their waiting time is not different between energy-cost models, hence
we only show them for the fixed price model. The reason is that the overall
utilization of the system is sufficiently low to have only few pending jobs.
This also confirms that a backfill scheduler is typically sufficient to schedule
jobs on a HPC system particularly. The BackFillDelay scheduler achieves
generally significantly lower waiting times for most jobs (up to q99) com-

1 BackFillDelay serves as baseline for the cost saving, the column saving is computed
relative to BackFillDelay and shows how much money can be saved (in k€).

12Q1: The quickest dispatched 25% of all jobs must wait up to this time. Q2 is the
median. Q3 is 75%. q90/q99 indicates the time 90% and 99% of all jobs finish before,
respectively.
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Configuration Run |Util..|Energy |Energy|Saving
days |% MWh k€|kE

Waiting time in minutes/days (d)
Q1 |Q2 |Q3 |q90 q99 |max

Fixed price

FIFO 4,214 611.1 0.0
BackfillDelay 4,214 611.0/ 0.0
BiggestFirstBackfill 4,214
LongestFirstBackfill . 4,214
BackfillShutdownDelay |

Base-peak

FIFO

83.2 | 4,214 | 611.0 0.1 |
2 :

BackfillDelay

PriceAware-12

PriceAware-24

PriceAware-36

Hourly cost model: T1

FIFO 83.2 | 4,214 | 607.7|

BackfillDelay

PriceAware-12

PriceAware-24

PriceAware-36

Hourly cost model: T2

FIFO 83.2 | 4,214 | 609.8|
BackfillDelay 4,214
BackfillShutdownDelay

PriceAware-12

PriceAware-24

PriceAware-36

PriceAwareDeadline-36("368.3 |

PriceAwareDeadline-48

Hourly cost model: T3

FIFO 83.2 | 4,214 | 547.6|

BackfillDelay

Table 10: Statistics for DKRZ 17
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Configuration Run |Util..|Energy
days |% MWh

Energy|Saving
k€ k€

Waiting time in minutes/days (d)
Q1 |Q2 |Q3 |q90

q99 |max

Fixed price
FIFO
BackfillDelay
BiggestFirstBackfill
LongestFirstBackfill

FIFO
BackfillDelay

EnforcePriceAware-36
PriceAware-12
PriceAware-24
PriceAware-36

PriceAwareDeadline-12
PriceAwareDeadline-24| 367.4 |74.2
PriceAwareDeadline-36] 367.9 [74.1 ||

Hourly cost model: T1
FIFO 74.4 578.4| 0.0 587 | 733
BackfillDelay 74.4 578.4] 0.0
BackfillShutdownDelay 74.4 543.8
PriceAware-12 70.7 | 3,804 561.2 428
PriceAware-24 70.4 | 3,811 562.2| 16.2 434
PriceAware-36 70.4 | 3,811 562.2| 16.2 434
PriceAwareDeadline-12 74.3 544.6 187 | 586 | 718 | 745 | 967
PriceAwareDeadline-24| 367.4 |74.2 545.8 260 | 686
PriceAwareDeadline-36| 367.9 |74.1 547.0 295 | 961
PriceAwareDeadline-48| 368.4 |74.0 547.6 296 | 1033
PriceAwareDeadline-96| 370.4 |73.6 550.0 350

Hourly cost model: T2
FIFO

BackfillDelay

BackfillShutdownDelay

PriceAware-12

PriceAware-24

PriceAware-36

PriceAwareDeadline-12

PriceAwareDeadline-24| 367.4|74.2

PriceAwareDeadline-36| 367.9 |74.1

PriceAwareDeadline-48| 368.4 |74.0

PriceAwareDeadline-96] 370.4 [73.6 ||

FIFO

BackfillDelay

PriceAware-12

PriceAwareDeadline-12

PriceAwareDeadline-24

PriceAwareDeadline-36

PriceAwareDeadline-48

PriceAwareDeadline-96

Table 11: Statistics for DKRZ 15
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Configuration Run |Util..|Energy |Energy|Saving Waiting time in minutes/days (d)
days |% MWh k€kE€ Q1 |Q2 |Q3 |q90 q99 |max
Fixed price
FIFO
BackfillDelay
BiggestFirstBackfill

LongestFirstBackfill

FIFO

BackfillDelay

BackfillShutdownDelay

PriceAware-12

PriceAware-24

PriceAware-36

PriceAwareDeadline-12

PriceAwareDeadline-24

PriceAwareDeadline-36

Hourly cost model:
FIFO

BackfillDelay

PriceAware-12

13,105

PriceAware-24

13,154

PriceAware-36

13,174

PriceAwareDeadline-12 . 13,092
PriceAwareDeadline-24 .9(73.1 | 13,092
PriceAwareDeadline-36| 394.9 |73.1 | 13,093
PriceAwareDeadline-48| 395.1 |73.0 | 13,093
PriceAwareDeadline-96| 395.1 |73.0 | 13,094
Hourly co: 2

FIFO

BackfillDelay

BackfillShutdownDelay

PriceAware-12

PriceAware-24

PriceAware-36

PriceAwareDeadline-12

PriceAwareDeadline-24

PriceAwareDeadline-36

PriceAwareDeadline-48

PriceAwareDeadline-96| 394.9 [73.1

Hourly cost model: T3

FIFO

BackfillDelay

PriceAware-12

PriceAware-24

PriceAwareDeadline-12| 394.8 |73.1

13,092

PriceAwareDeadline-24| 395.1 |73.0

PriceAwareDeadline-36 73.0

PriceAwareDeadline-48 72.9

PriceAwareDeadline-96 72.5

Table 12: Statistics for LRZ 17
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Configuration Run |Util..|Energy |Energy|Saving Waiting time in minutes/days (d)
days |% MWh k€kE€ Q1 |Q2 |Q3 |q90 q99 |max
Fixed price
FIFO 1,876.5
BackfillDelay 1,876.5
BiggestFirstBackfill 12,090 (1,753.1
LongestFirstBackfill 12,090 (1,753.1
12,090

FIFO

BackfillDelay

BackfillShutdownDelay

PriceAware-12

PriceAware-24

PriceAware-36

FIFO

BackfillDelay

12,090

PriceAware-12

12,090

PriceAware-24

12,090

PriceAware-36

12,176

12,090

12,090

12,090

12,090

12,090

FIFO

BackfillDelay

2

PriceAware-12

PriceAware-24

PriceAware-36

Hourly cost model: T3

FIFO

BackfillDelay

BackfillShutdownDelay

12,090

PriceAware-12

12,090

PriceAware-24

12,332

12,090

12,090

12,090

12,090

12,090

Table 13: Statistics for LRZ 14
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pared to any other scheduling policy. Even the waiting time for 90% of jobs
(q90) is with a few minutes acceptable and 99% jobs are started within 2
hours. The LRZ 14 trace, however, has with up to 700 minutes a substantial
waiting time for 9% of the jobs. However, a very few (big) jobs are delayed
for several weeks. This is a bit unrealistic, as in practise, the priority of such
a job would enforce execution at some point. Neither of these schedulers are
able to save actual runtime of the workload as jobs are submitted until the
end of the trace, and, thus, energy saving is comparable. In some cases, FIFO
is a bit worse or better than the others. The latter is a coincidence and par-
ticularly may happen for the hourly energy-cost models when it accidentally
schedulers jobs on cheaper energy prices.

Shutdown scheduler. The shutdown scheduler is effective to reduce the costs
for both data centers and workloads. Again, this is due to the fact that less
than 80% of nodes are utilized throughout the year, hence 20% of nodes can
be turned of saving their power. As suggested by our theoretic model, the
saving for LRZ is about 120k€ and 160k<€ for all energy models for the trace
of 2014 and 2017, respectively. For DKRZ it is 35k€ and 23k€ for 2015 and
2017, respectively. Therefore, shutdown of nodes, particularly with suspend
to RAM would be effective for both data centers.

Enforcing energy saving. As the EnforceCheapEnergy scheduler delays exe-
cution of jobs to cheaper prices without considering the infrastructure energy
costs, it leads to longer runs and actually increases the energy consumption
and costs for DKRZ. For LRZ, it was effective to reduce the costs even more
than the BackfillShutdown scheduler for the BasePeak model saving an extra
of 10-20k€. Hence, this naive strategy is only applicable, when the utilization
is sufficiently low and a predictable energy cost pattern is applied. However,
even in that case it did increase the runtime by 10-20% and, hence, this is
not a practicable approach. Note that any extension of runtime means we
have to operate the data center longer without users submitting new jobs
which is unrealistic. Generally, the more lookahead it has, the more it stalls
jobs and the worse its performance.

Price-Aware scheduler. The PriceAware scheduler is typically able to reduce
the costs (see, e.g., T1 for DKRZ 17) but may increase the overall energy
consumption considerably. In most cases, the jobs are considerable delayed
and, hence, the runtime of the traces increases but there is considerable cost
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Figure 6: Example for FIFO achieving better energy costs for dispatching two jobs on a
single node. The lower part shows the actual execution of jobs.

saving compared to BackfillDelay. Still, compared to the BackfillShutdown-
Delay scheduler, the PriceAware scheduler yields worse cost saving. The
look-ahead window has some influence but longer look-ahead does not in-
crease energy saving and may even be worse, which is counter intuitive.

The reason for the worse results is due to the heuristic nature of the
scheduling algorithm; the algorithm in combination with the pending jobs
tries to make smart choices, but future jobs are penalized more than we win
in the short term. We give an example in the following. Assume we have only
one node and two jobs that are submitted at t=0; the given cost function
and runtimes as illustrated in Figure 6. The price first drops continuously
then rises rapidly. The FIFO scheduler dispatches both jobs immediately,
achieving an average cost for the energy as marked with the vertical bar.
The PriceAware scheduler would compare the energy costs for leaving the
nodes idle vs. the gain when starting late. We assume due to the falling
price the gain is still a bit better, hence, the scheduler would dispatch the
job as late as possible just before the price rises. Job A would get the lowest
energy costs. However, then it must schedule Job B in a period of rapidly
rising costs, at best it schedules it immediately. As you can see the mean
energy costs (of both jobs) scheduler are now actually higher than for FIFO
and we even delayed the user jobs further! Now, one may argue that the
scheduler should be able to postpone both jobs as much as possible in the
phase with decreasing costs, but the lookahead window may just end right
before the prices rise again. Therefore, the heuristics is unable to exploit the
potential gain.
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Price-Aware-Deadline scheduler. While the scheduler works similarly to the
previous scheduler, its main difference is that it enforces to dispatch jobs
when the submission time has passed the lookup window size. While this
still leads to considerable delay times particularly during peak times, this
strategy actually leads to a reduction of costs while it may increase the
energy consumption slightly. Generally, the algorithm does what it intended
to do, aiming to reduce costs.

Table 14 shows the cost savings compared to the BackfillDelay algorithm,
and shows the cost benefit of the PriceAware algorithm over the BackFill-
ShutdownDelay algorithm. As suggested by the enforcement of the algo-
rithms, the additional cost savings are minimal and often the shutdown
scheduler is still better. Consequently, the presented algorithms are unable
to exploit the theoretic optimal gain of an optimal scheduling.

Trace BackFillShutdownDelay cost saving ||PriceAwareDeadline cost saving benefit
BasePk | T1 | T2 | T3 BasePk | T1 | T2 | T3 ||

DKRZ 14 33.9 34.7 35.0 30.1 36.8 32.6 35.0 34.5(|2.9]-2.1]| 0.0| 4.4

DKRZ 17 22.0 24.2 23.1 22.8 23.7 23.5 22.8 20.9(|1.7|-0.7]-0.3|-1.9

LRZ 15 33.9 34.7 35.0 30.1 36.8 32.6 35.0 34.5(|2.9]-2.1] 0.0| 4.4

LRZ 17 160.3| 162.3| 157.2| 154.0 165.7| 166.9] 157.9| 146.0(|5.4| 4.6 0.7|-8.0

Table 14: Simulated cost savings in k€ compared to the BackfillDelay algorithm and
between the two cost-aware schedulers

6.7. TCO Considerations

This section aims to compare the cost savings to the Total Cost of Own-
ership (TCO). TCO of a given Data Center (DC) is the aggregated sum of
all costs spent on using and acquiring DC’s assets.

We compare three scenarios:

e Current: This is the current configuration, where we purchase the
machine with the characteristics in Table 2. In this case, we assume to
pay the average price according to the trace.

e Optimal energy costs: Here, we use the theoretically computed val-
ues when we 1) shutdown the client nodes; 2) use the optimal schedul-
ing; 3) shutdown infrastructure while it is not needed (see Table 8).

e Optimal procurement: In this scenario, we are able to dynamically
buy exactly the fraction of the system according to its utilization. We
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assume the system costs are proportional to the utilization'® but the
annual costs stay the same. In this case, we assume to pay the average
price according to the trace.

Note that the following analysis is highly approximative due to the inac-
curacy of the publicly available data about system costs and annual costs,
and the assumption under the scenarios. An additional assumption is that
the procurement costs (CAPEX) are equally shared among 5 years of system
life time. The results of the three scenarios are summarized in Table 15. The
table shows for each scenario the expenses for the system procurement and
the annual upkeep, the consumed energy of the strategy, the implied energy
costs, and the TCO assuming that staff and infrastructure serves the sole
purpose of operating and supporting a machine.

Trace System| Energy Energy costs in k€ TCO in k€

Ex. in k€|in MWh||BasePeak| T1| T2| T3||BasePeak| T1| T2| T3
LRZ 14 32,600| 12,941 1,870|1,876(1,874|1,699 34,470(34,476|34,47434,299
LRZ 17 32,600| 14,189 2,050(2,064(2,039(1,857 34,650(34,664(34,639|34,457
DKRZ 15 7,300{ 3,986 576 578| 577| 523 7,876| 7,878| 7,877| 7,823
DKRZ 17 7,300 4,214 609 611| 610] 553 7,900| 7,911| 7,910 7,853

(a) Current situation — the baseline

Trace System| Energy Energy costs in k€ TCO in k€

Ex. in k€|in MWh||BasePeak| T1| T2| T3||BasePeak| T1| T2| T3
LRZ 14 32,600 11,758 1,628(1,511|1,612(1,354 34,228|34,111|34,212|33,954
LRZ 17 32,600| 12,643 1,727|1,589|1,703|1,407 34,327(34,189|34,303(34,007
DKRZ 15 7,300 3,452 472| 433| 470 386 7,772| 7,733| 7,770| 7,686
DKRZ 17 7,300 3,864 541| 509| 535| 459 7,841| 7,809| 7,835| 7,759

(b) Optimal energy consumption (client/infra. shutdown) and scheduling

Trace System| Energy Energy costs in k€ TCO in k€

Ex. in k€|in MWh BasePeak[ Tl[ T2[ T3 BasePeak[ Tl[ T2[ T3
LRZ 14 29,048 11,758 1,699|1,705|1,703|1,543 30,747(30,752{30,750|30,590
LRZ 17 28,251 12,643 1,827|1,840(1,660(1,833 30,078{30,090(29,911|30,084
DKRZ 15 6,455 3,452 499 501| 501 500 6,954| 6,956| 6,956| 6,955
DKRZ 17 6,746 3,864 558| 560| 559| 507 7,304| 7,306| 7,305 7,253

(c) Optimal procurement

Table 15: Theoretical TCO comparison for the three different scenarios and one year

Observations: As the energy costs account for only a fraction of the
TCO, the saving of the optimal energy costs strategy is about 1-2% of

13In practise, the scaling is not linear due to the economy of scale, but as we still keep
more than 75% of the system, this is a rough estimate.
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the TCO. As expected, the dynamic and optimal procurement leads to
substantial cost savings, as 10% of the procurement costs could be saved.
However, this scenario is highly unlikely as it would increase the waiting
time for users significantly. Therefore, we consider a slightly overprovisioned
machine is optimal, that means that typical user jobs can be handled by
the local supercomputer, while bursts of user jobs with high priority can be
offloaded to the cloud to minimize waiting time.

7. Summary & Conclusion

In this paper, we discussed the benefit of using alternative energy and
cost-saving strategies in data centers and quantified the estimated benefit
for DKRZ and LRZ data centers. We explored the advantage of using billing
modalities for a BasePeak and three different hourly pricing models. While
the theoretic and best-case assessment suggests cost-savings up to 19% and
15% for LRZ and DKRZ, respectively, the more realistic simulation showed
that these theoretical benefits can be barely achieved. This may be partially
due to the fact that FIFO schedulers are used as baselines. Besides the
low gain of cost-aware schedulers, they substantially increase the waiting
time of users’ jobs. For the assessment, we used four different cost models,
including a base/peak model, and three synthetically generated traces. The
models based on the stock market hourly prices prove to be not beneficial
when assuming the average price is comparable to the other cost models. In
addition, we observed almost no cost-saving with our scheduling strategies
compared to the client node shutdown. However, the theoretical analysis of
the TCO shows where to conduct further research.

Still, this article discussed various viable alternatives. In terms of practi-
cability, we believe a base/peak model is a viable option since it provides a
more predictable turn-around-time as the machine is highly utilized during
night time while pending and interactive jobs can still be dispatched during
day time!*. Additionally, the significance of cost-saving by turning off client
nodes is such as to motivate the deployment in a productive operation; the
gain is in the order of two full-time-equivalent researchers at LRZ and %
for DKRZ. While existing schedulers support shutdown /restart of nodes, we

14This model can still be applied when buying energy from the stock market, however,
we just classify the price into base/peak classes.
15Qalary about 60 k€ per year.
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claim suspending to memory might be an optimal strategy to reduce wear-
down of the components and improve the response time. In respect of TCO,
an optimal and timely procurement of hardware upon the need provides
a significantly lower cost even in comparison with the best energy-savings
methods. As it is expected, a high utilization of data centers is obviously the
key to efficient science. A model presumably would prove cost-efficient by
applying a slight overprovisioning of hardware and using methods to dynam-
ically overflow workloads into the cloud while imposing a low waiting-time on
users’ jobs - particularly whenever bursts of jobs are rarely submitted. How-
ever, this requires a seamless experience at users’ side, in terms of capabilities
such as data access and visualization.

Based on the results described in this paper, we will explore the cost-
benefit of further billing and scheduling strategies that were mentioned earlier
in the text. However, since energy is only a fraction of the costs with a limited
potential, as shown, the main focus of research is to gain a deeper insight
into TCO and its implication on workflows and producing scientific outputs
using supercomputers.
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