
E10 – Exascale IO
André Brinkmann, Toni Cortes, Hugo Falter, Julian Kunkel, Sai Narasimhamurthy
Johannes Gutenberg University Mainz, Partec and EOFS, Barcelona Supercomputing Center, DKRZ, Seagate

H
igh-performance computing has already
turned many compute challenges into
storage problems. Checkpointing appli-

cation state, in-situ analysis of data, or big
data applications have significantly increased
the pressure on storage systems. Exascale
environments will increase this pressure by
three additional orders of of magnitude. The
E10 – Exascale IO workgroup is an interna-
tional collaboration between academic orga-
nizations and companies that steers the trans-
fer of HPC storage environments into the
Exascale era, so that legacy applications and
new developments can benefit from new com-
pute and storage architectures. The following
white paper describes the E10 approach and
architecture and will outline its roadmap.

Introduction

High-performance computing can look back on
tremendous progress in the first decade of this cen-
tury. File systems unfortunately have not been able
to keep pace with this progress of compute perfor-
mance. The average load of storage devices is often
very low, in many cases they are only able to use 10%
of their potential, while the fraction of time spent
in I/O has significantly increased for applications.
Scaling to very large numbers of IO nodes has not
led to a similar throughput scaling.

Several high-level IO libraries like HDF5, NetCDF,
and MPI-IO have tried to address these problems
with some success [1][2]. However they are not in-
tegrated into the file system and its transactional
and recovery semantics. Some of these libraries even
build a file system inside a file, thus the real file sys-

Table 1: Exascale supercomputer characteristics1

2012 2020

Nodes 10-100K 100K–1M
Threads/node 10 1000
Total concurrency 100K-1M 100M-1B
Object create 100K/s 100M/s
Memory 1–4PB 30–60 PB
FS Size 10–100 PB 600–3000 PB
MTTI 1–5 Days 6 Hours
Memory Dump ≤ 2000 s ≤ 300 s
Peak I/O BW 1–2 TB/s 100–200 TB/s
Sustained I/O BW 10–200 GB/s 20 TB/s

tem cannot leverage its metadata system, ordering
constraints, and recovery semantics.

HPC IO challenges, therefore, have not been re-
solved so far and the future of Exascale is full of
uncertainties (see Table 1 for a prediction). A wilder-
ness of new hardware is expected to arrive – such as
deeper hierarchies of storage devices, storage class
memory, and large numbers of cores per node. This
new hardware may both contribute parts of the solu-
tion and also bring new issues to the forefront. This
forces storage and application architects to revisit
ideas used so far.

E10 as an international collaboration of academic
and industrial organizations, working under the um-
brella of the Europen Open File System Organization
EOFS, tries to focus distributed storage research and
implementation efforts into a joint undertaking to
increase the probability of a successful adoption of
new storage and I/O architectures and technologies

1see, e.g, John Bent: Exascale Storage for HPC: Burst buffers
with a new Storage API, ISC 2013

Page 1 of 6



for Exascale.

Nevertheless, the past has shown that changes to
file system semantics take place at a slow pace. The
POSIX interface, while being one of the most serious
bottlenecks of scaling parallel file systems, has only
been extended slightly over the last 30 years (e.g.
with lstat()). Facing new challenges, researchers
are willing to adapt new interfaces; for example,
large-scale data analytics lead to the wide-spread
adoption of MapReduce-like environments.

E10 provides a roadmap, which allows to continue
the usage of mature file systems, like GPFS and
Lustre, over the next years, while providing improve-
ments in the areas of management, interfaces, and
predictive analysis. Nevertheless, changes to the
underlying storage backend seem inevitable in the
long run, so that E10 already prepares new storage
semantics and implementations. The aim is to pro-
vide a future-proof storage backend, which is able to
support next generations metadata and bandwidth
performance, while offering file and MapReduce-like
interfaces. The foundation are new storage semantics
and object storage devices, which support transac-
tional semantics and, therefore, improved parallel
access.

This white paper will give an overview about E10
on different architectural granularities and will also
provide a short-, mid-, and longterm roadmap of the
implementation plans of the different E10 partici-
pants.

Exascale Hurdles

The nesting of the HPC I/O stack The I/O
stack involves several layers, a typical nesting of
stacks is NetCDF4 (on top of) HDF5, MPI-IO and
POSIX. This stacking has several restrictions: Firstly,
it dominantly use of POSIX as file system API. There-
with, scalability limitations implied by POSIX’ strict
consistency model apply. Secondly, the semantical
information available in high-level I/O libraries is lost
and not exploitable by the storage system. Thirdly,
the loose coupling of the middleware layers with the
file system lead to a replication of features within
the layers; this not only increases implementation
effort but the interplay of deployed optimizations
may even lead to suboptimal performance.

Workflow and process automation Scientific
workflows often involve a pre-processing and post-
processing of data. Existing file systems, however, do
not provide efficient support to notify availability of
data records. In the workflow management, people
often use (empty) ready files with a well-known name

that are created once the data is available. Another
program periodically checks for the ready file and
starts post-processing once it is ready. However, due
to a lack of metadata consistency guarantees it may
happen that even though the ready file is available,
the data is not yet. Also, many scientific domains
offer data products of their simulations to their com-
munity. Therefore, they often import created data
and add indexes to speed up data exploration. Effi-
cient data management is one of the most important
aspects of storage and yet standardized approaches
to do it has been lacking. There have been some
attempts to provide data management frameworks
in the past within the storage community, but with
very limited adoption [5].

Technical hints inhibit performance porta-
bility Parallel file systems often provide mechanisms
that allow programmers to disclose their I/O pat-
tern knowledge to the lower layers of the I/O stack
through a hints API. This information can be used
by the file system to boost the application perfor-
mance, for example, through data prefetching. Un-
fortunately, programmers rarely make use of these
features, as every file system needs other parameters
to exploit performance potentially even using differ-
ent interfaces. Additionally, scientific applications
frequently perform small non-contiguous accesses to
files using the POSIX I/O interface. This makes it
impossible for them to take advantage of automatic
optimizations, such as collective I/O or data-sieving
enabled by the MPI I/O middleware. As a result pro-
grammers are missing the opportunity to exploit the
full potential of the storage system and applications
perform poorly.

Checkpointing Checkpointing is a defensive ap-
proach to recover from node failures but in the best
(failure-free) case, the written checkpoints are never
accessed. Historically, the required storage through-
put for Exascale systems is estimated based on the
system memory capacity and expected failure rate.
Thus, the storage backend has to be dimensioned
based on the peak checkpointing demand, a rule of
thumb is that one checkpoint per hour should not
take more than 10% of the possible runtime, leading
to storage systems, which are able to store the com-
plete system memory in less than 6 minutes. The
conventional approach to store checkpoints there-
fore assumes that the storage backend bandwidth
grows with the system memory size, so that storage
becomes one of the most expensive components of
future high-performance clusters.

Projects like the DOE funded FastForward Storage
and IO project want to tackle this challenge by imple-

Page 2 of 6



menting burst-buffers, which are based on expensive
high-performance SSD storage and which are able
to store the last recent checkpoints on SSDs, while
slowly synchronizing some (not all) checkpoints with
disk-based long-term storage [3].

Changes in the design of high-performance stor-
age clusters introduced by demands of data-intensive
applications offer a second, more cost-effective ap-
proach to store checkpoints. Nodes of HPC systems
are more and more equipped with node-local storage
to accommodate the demands of big data challenges,
which could also be used to store checkpoints. In-
terestingly, SSDs within nodes are significantly less
expensive than SSDs within backend storage envi-
ronments, making them an interesting alternative
to build a distributed storage environment. Further,
there will be a plethora of new NVRAM technologies
on the horizon that will need to be reasonably incor-
porated in this I/O hierarchy to balance performance
and cost constraints.

Performance analysis Due to the complex inter-
play of hardware and software layers in the current
systems, it is non-trivial to estimate performance of
new accesses patterns. If the observable performance
for an I/O-intense application behaves badly, it is
very difficult to identify the bottleneck. While there
are many tools that reveal observed hardware perfor-
mance, it is barely possible to investigate the data
flow in the I/O path in detail as existing systems are
not including explicit support for this use case. Also,
capturing and analyzing all file systems events is
overwhelming as parallel files systems easily generate
millions of events per day. Only the combined analy-
sis of application and storage behavior enables us to
understand I/O performance issues. It is important
to realize that the impossibility to analyze this data
have been responsible for the majority of I/O prob-
lems on ground-breaking installations, introducing
typically weeks to months between the observation
and resolution of I/O problems. The trace analytics
problem of a large scale I/O installation is a text-
book example of what is called big data analytics,
and requires best of breed tools, for example to dis-
tribute the data reduction as in Hadoop analyses in
order to avoid approaches that have failed to scale.

Performance prediction The steady growth of
file system scalability often leads to novel problems
that must be overcome. Being on the forefront of
large-scale storage system, the identification of scal-
ability inhibitors before a new system is built is
barely possible with existing storage systems. Also,
strategies to overcome these scalability hurdles can
only be evaluated once a system becomes available.

While predicting I/O behavior for millions of nodes
is a difficult task, there is a need for an Exascale
I/O simulation and modeling environment which can
serve the needs of research in I/O infrastructures. A
flexible environment embedded in the storage middle-
ware reduces the costs and constraints of having real
deployments with which to experiment and demon-
strate improvements.

E10 – Architecture

Parallel file systems have evolved since the introduc-
tion of GPFS and Lustre; now they offer advanced
management features, which are comparable to en-
terprise file system environments. As it typically
takes around 10 years for a file system to mature
and to provide the required feature set, it is not
feasible to just replace these file systems by a new
approach. Existing file systems include a number of
design decisions which have been made for Terascale
HPC environments. Unfortunately, they have never
been designed to scale to hundreds of millions of file
creates per second or a sustained IO bandwidth of
hundreds of TByte/s.

E10 therefore takes a two-step approach and pro-
vides in the first step a number of tools and interfaces
which help existing as well as new storage environ-
ments to become more efficient (see Figure 1). In
parallel to this ecosystem, the E10 working group
will build new core storage systems, which meet the
functional requirements of future systems.

E10 Middleware

The E10 middleware described in this section is de-
composed into a number of loosely coupled com-
ponents, which should help existing and future file
systems to become more scalable and more man-
ageable. Most of the components’ design is based
on insights, which have been made individually by
different researchers and for different file system im-
plementations. Unfortunately, these ideas have not
gained wide-spread adoption for several reasons. One
reason is that there are now a handful of competing
approaches each trying to fix suboptimal file systems
but providing interfaces at different granularities.
Thus applications must be adapted specifically for
each prototype.

E10 is providing middleware components, which
are directly adapted to the most used file systems, so
that it becomes sufficient to adapt programs once to a
specific feature. Furthermore, we are working closely
together with the file system developers, so that

Page 3 of 6



required changes can become part of the mainline
source tree.

E10 Guided Interfaces: E10 guided interfaces
will be implemented as a middleware layer that will
allow applications to indicate expected access pat-
terns and future use of data and to submit this
information to arbitrary storage backends. This will
allow the storage system to assist with performance
aspects such as data distribution or re-use. The
middleware will, in contrast, e.g., to POSIX hints,
enable application developers to support extensibil-
ity, asynchronous behavior, directives and support
for distributed environments.

Furthermore, hints can also be given after the
application has been developed, so that users are
able to leverage their application knowledge.

Distributed Checkpointing E10 will develop
a framework that is able to distribute checkpoints
within the HPC system itself and will build on the
concepts of the scalable checkpoint restart library [4].
The basic idea of storing checkpoints on the nodes
themselves is that the bandwidth easily scales with
the problem size. A major difference to previous
approaches is that it is not based on an interposing
library, which can only work for a fixed setting of
applications types, e.g., MPI applications. Instead,
the local resource manager will create at applications
start-up time a distributed, virtualized storage en-
vironment, which can be accessed in the same way
as a standard file system. In contrast to a parallel
file system, the environment will not support con-
current accesses to a single volume, as the different
nodes can be easily coordinated by the middleware
to write the checkpoint without the requirement of
complicated locking protocols. The virtualization
approach will also enable us to asynchronously hide
the data transfer between the nodes by first buffering
the checkpoints within the node.

Applica'ons	  /	  Tools	  /	  Libraries	  

Guided	  Interfaces	  

Core	  Storage	  System,	  e.g.,	  Lustre,	  GPFS,	  
Fraunhofer	  FS,	  DAOS,	  E10	  FD

M
I	  

Data	  Analy'cs	  

Vi
su
al
iza

'o
n	  

Si
m
ul
a'

on
	  

Tr
ac
in
g	  

Figure 1: Interfacing the E10 middleware. Blue compo-
nents will be developed within E10.

FDMI Plug-ins: The FDMI (File Data Manage-
ment Interface) framework within E10 aims to re-
move parts of the complexity of previous approaches
by focusing on information, which could be provided
by the distributed file system logs. The standardized
interfaces enable data management features to be
added as flexible “plug-ins” very easily and E10 will
create ”plug ins” for Information Lifecyle Manage-
ment (ILM), data repair, high availability and file
system checking. Most third-party features within
E10 in the future are expected to be developed as
FDMI plugins.

Performance Analysis and Visualization:
E10 will leverage existing general purpose tracing
tools like Scalasca, Vampir as well as our experience
in projects like the SIOX project to create an in-
frastructure that collects I/O events from all I/O
layers, visualizes the information and analyzes the
I/O events for patterns that are performance critical
to be able to detect dependencies between the differ-
ent storage system and application components [6][7].
The trace environment and the core storage system
will provide interfaces to a data analytics framework,
which helps to understand optimization opportuni-
ties and which will also provide on-line interfaces to
steer applications and system configurations.

Simulation: Simulation of the I/O infrastructure
will be performed under various application work-
loads based on “operation logs” collected by E10 part-
ners. These real world operation logs can be edited to
emulate “what if” scenarios and hence the Simulation
and Modeling component is fed with various alter-
nate scenarios within the workload. The simulation
and modeling components are built from characteri-
zations of real storage hardware and software com-
ponents. Mathematical characterizations are sought
for storage hardware and behavioral characterization
is sought for software components. These form the
predictive analysis components of I/O behavior.

E10 Core Storage System

HPC parallel file systems like Lustre or GPFS have
been designed with Terascale, not Exascale comput-
ing in mind. HPC data centers therefore started to
provide different solutions, like parallel file systems
and key value object stores, within a single environ-
ment to support different user demands concerning
interfaces and metadata performance. E10 therefore
investigates architecture concepts for the core stor-
age systems, which should be able to replace today’s
storage approaches in the next decade.

The basic insight has been an analysis of paral-

Page 4 of 6



Storage	  Backend	  

Applica2ons	  /	  Tools	  /	  Libraries	  

Guided	  Interfaces	  

FD
M
I	  

Data	  Analy2cs	  

Vi
su
al
iza

2o
n	  

Si
m
ul
a2

on
	  

Tr
ac
in
g	  

Schemas	  

Key	  Value	  Interface	   File	  System	  Interface	  

Object	  Storage	  Backend	  

Figure 2: E10 Core Storage System.

lel file systems and big data environments, which
revealed that the different usage scenarios are not
primarily based on fundamental design differences,
but on subtly different semantical constraints. The
metadata performance of today’s HPC file systems,
e.g., is not constrained by data structures like direc-
tories, but mostly by the underlying POSIX seman-
tics, which has been introduced to support desktop
and server systems, not HPC environments. On
the other hand, big data environments have been
designed to overcome the metadata scalability restric-
tions of standard file systems, while not including
the lessons-learned from decades of HPC file system
development.

The E10 core storage system architecture (see Fig.
2) is based on an object-storage substrate, which
builds the foundation for a key-value and a file sys-
tem interface. The key-value interface is based on
the standard put and get semantics of today’s key
value stores, so that NoSQL databases can directly
reside on top of this interface without an additional
translation. We intend to standardize an advanced
object interface based on this concept that further
provides horizontally scalable and non-posix seman-
tics for distributed objects. The key-value function of
the interface would provide the required distributed
metadata semantics for objects. The file system in-
terface will be close to the POSIX semantics, but
will be optimized for high metadata create- and up-
date rates, while defensive operations, like ’ls *’ will
slightly change their runtime behavior. The seman-
tics of the key-value and the file system interface will
be close enough that data stores can be concurrently
accessed from both interfaces.

Complex data structures, like NetCDF- or HDF5-
files, will be supported through schemas. Semantic
information, which is today lost between the exe-
cution library and the file system, will therefore be
available for the core storage system, so that addi-

tional optimizations become possible.

An overarching concept to support this environ-
ment at scale is the usage of a highly available RAS
component, which contains configuration, data collec-
tion and reduction based on distributed monitoring
concepts.

Development and Roadmap

The E10 architecture is developed and implemented
as a community effort. The initial architecture has
been derived after a number of requirement gathering
workshops with computational scientists from North-
America, Europe, and Asia until 2012 and has been
in a convergence process between end of 2012 until
mid of 2014. The component interfaces have been
designed based on regular architecture workshops
and have been opened to the community via the
http://www.eiow.org web site.

HERE WE HAVE TO ADD THE ROADMAP

Conclusion

This white paper introduced the vision of the E10
workgroup on how to change the architecture and use
of HPC storage environments. Changes concerning
the E10 ecosystem have been designed to be inde-
pendent from the core storage subsystem, so that
benefits can be leveraged by existing file systems, e.g.
Lustre, GPFS, or Fraunhofer FS. Significant parts
of the development of the core storage environment
will require time to be implemented and to become
mature, so that their new concepts can help scien-
tists to benefit from the underlying scalability and
reliability enhancements.

E10 has been thus far been supported in a small
way by a number of European and national projects,
including the EU FP 7 MCITN ’SCALUS’, the EU
Deeper-project, the German BMBF SIOX project
and the German DFG Transregio on Soft Matter
Systems. While these projects, including additional
fundings from the partners, have been sufficient to
derive the basic architecture, there is huge scope
for new ideas and methods to be explored and fully
evaluated. E10 expects to propose a future project
focusing the research into this area and targeting
the standardization of API’s across the international
communities as part of the EU H2020 work programs
for which we would very much like to have your
support.

Page 5 of 6



References
[1] J. Li, W. keng Liao, A. N. Choudhary, R. B. Ross,

R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gal-
lagher, and M. Zingale, “Parallel netcdf: A high-
performance scientific i/o interface,” in Proceedings
of the ACM/IEEE SC 2003 Conference on High Per-
formance Networking and Computing (SC), Phoenix,
AZ, USA, Nov. 2003.

[2] R. Thakur, W. Gropp, and E. L. Lusk, “On imple-
menting mpi-io portably and with high performance,”
in Proceedings of the Sixth Workshop on I/O in Paral-
lel and Distributed Systems (IOPADS), Atlanta, GA,
USA, May 1999, pp. 23–32.

[3] J. Bent, G. A. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, M. Polte, and M. Wingate,
“Plfs: a checkpoint filesystem for parallel applications,”
in Proceedings of the ACM/IEEE Conference on High
Performance Computing (SC), 2009.

[4] A. Moody, G. Bronevetsky, K. Mohror, and B. R.
de Supinski, “Design, modeling, and evaluation of a
scalable multi-level checkpointing system,” in Proceed-
ings of the Conference on High Performance Comput-
ing Networking, Storage and Analysis (SC), 2010.

[5] The Open Group, Systems Management: Data Storage
Management (XDSM) API (CAE Specification), 1997.

[6] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz,
M. Lieber, H. Mickler, M. S. Müller, and W. E. Nagel,
“The vampir performance analysis tool-set,” in Proceed-
ings of the 2nd International Workshop on Parallel
Tools for High Performance Computing, Stuttgart,
Germany, Jul. 2008, pp. 139–155.

[7] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Di-
ethelm, D. Eschweiler et al., “Score-p: A joint per-
formance measurement run-time infrastructure for
periscope, scalasca, tau, and vampir,” in Proceedings
of the 5th International Workshop on Parallel Tools
for High Performance Computing, Dresden, Germany,
Sep. 2011, pp. 79–91.

Page 6 of 6


