
Simulation of Hierarchical Storage Systems for
TCO and QoS

Jakob Luettgau and Julian Kunkel

Deutsches Klimarechenzentrum GmbH,
Bundesstraße 45a, D-20146 Hamburg

{luettgau,kunkel}@dkrz.de

http://www.dkrz.de/

Abstract. Due to the variety of storage technologies deep storage hi-
erarchies turn out to be the most feasible choice to meet performance
and cost requirements when handling vast amounts of data. Long-term
archives employed by scientific users are mainly reliant on tape storage,
as it remains the most cost-efficient option. Archival systems are often
loosely integrated into the HPC storage infrastructure. In expectation
of exascale systems and in situ analysis also burst buffers will require
integration with the archive. Exploring new strategies and developing
open software for tape systems is a hurdle due to the lack of affordable
storage silos and availability outside of large organizations and due to
increased wariness requirements when dealing with ultra-durable data.
Lessening these problems by providing virtual storage silos should enable
community-driven innovation and enable site operators to add features
where they see fit while being able to verify strategies before deploying
on production systems. Different models for the individual components
in tape systems are developed. The models are then implemented in a
prototype simulation using discrete event simulation. The work shows
that the simulations can be used to approximate the behavior of tape
systems deployed in the real world and to conduct experiments without
requiring a physical tape system.

Keywords: Modeling, Simulation, Tape, Long-term archive, Hierarchi-
cal Storage Systems, Performance, Total Cost of Ownership

1 Introduction

With the increasing demand for long-term storage, automated tape libraries will
likely remain an integral part of the storage hierarchy for many years to come.
Tape as a storage medium has many attractive properties. It is fairly robust and
provides high data densities, but the most important factor is that tape is very
affordable in comparison to other storage technologies. Standardization efforts
such as LTO make tape attractive and future proof, thus protecting investments.
Despite tapes long history, the technology is still competitive[3][4], but incentives
to turn technological improvements in capacity and performance

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-67630-2_12
1/13

2 Simulation of Hierarchical Storage Systems for TCO and QoS

In an effort to speed up innovation and to enable also newcomers and experts
and without access to large scale tape systems to contribute, the objectives of
this work were to develop a simulator, tools, and primarily appropriate models
required to reproduce the dynamics of hierarchical storage systems and tape
libraries. Modeling a complete tape system is a complex task, because many
different components are involved. It was possible to identify a number of key
components that are essential to any tape system. It was further possible to
provide comprehensive models to describe the dynamics of many of these key
components. In particular, models for hardware and software components were
proposed and isolated in such a way that turning to more accurate models is
possible.

2 Related Work

Efforts to improve tape storage systems often focus on advancing the technology
that is used to read and write tape. This is mostly in the domain of vendors and
not much of the research conducted is published to protect a business advantage.
More openly discussed are strategies for data placement on tape[1][9][8] and
the magnetic representation[2]. Such strategies maybe exploited by higher level
algorithms, but tape drives and hardware generally do not expose fine-grained
control to the users. Another form of placement which was researched but has
not yet found its way into many production system is RAIT [4] or TapeRAID
and combinations of RAID and tape[6]. Pure tape systems cease in relevance
and hybrid and hierarchical storage systems promise to provide cost-efficient
solutions with the best properties of multiple technologies. Dee et al.[2] stress
the opportunities of automation, which enabled scalable solutions that seamlessly
integrate into existing the storage hierarchy. Koltsidas et al.[5] focus especially
on the integration of disk and tape. Zhang et al.[10] explore different object
placement strategies within tape libraries to optimize tape switch, data seek and
transfer times using a simulation. More recently, Mäsker et al.[7] use workload
traces of the European Centre for Medium-Range Weather Forecasts (ECMWF)
to simulate tape libraries, albeit not integrated into the hierarchical storage
system of the data center.

3 Simulation Overview

To simulate tape libraries within hierarchical storage systems a huge variety
of subsystems and software components can be modeled and implemented for
simulation. Figure 1 provides an overview of some components that are of interest
because they offer opportunities for optimization. In particular the simulator is
designed to consider the following hardware components:

– Multiple clients or groups of clients that act together
– I/O Servers and server local disk/flash caches
– A global online based cache as is used with, e.g, HPSS

2/13

Simulation of Hierarchical Storage Systems for TCO and QoS 3

Client GroupClient

Tape Silo

Shared Cache

Switch

I/O

Servers
...

Cache

Switch

Drive

Drive

Drive Drive

Drive Drive

Drive

Drive

N
e
tw

o
r
k

I/
O

 S
c
h

e
d

u
li
n

g

Tape Manager

File Manager

Direct RAIT

Cache Policies

Robot

Sched.

Library Topologies

Workload

Generation

Load Balancing

Fig. 1: An overview of different subsystems and software components that are
relevant when simulating hierarchical storage systems and tape libraries.

– Multiple libraries and the position of tapes and robots within the library
– Multiple drives and tape generations (e.g., LTO)

More aspects about the network and library modeling are covered in Section 4
From the software side (see Section 5) the simulation has to implement the
following components to drive the hardware:

– Various book-keeping and resource management components to keep track
of files, tapes, free library slots and robots.

– Different I/O and network scheduling algorithms to grant resource allocation
– Cache displacement strategies for files in I/O node local or global caches
– (Potentially) load balancing mechanisms on different levels

Not all of these systems are implemented at this time. For example RAIT
and easily exchangeable load balancing and caching policies are not supported.
Besides functional components the simulator has to provide facilities to collect
data that is relevant to compare different configurations of virtual systems. Dif-
ferent helpers to sanitize workload traces as well as R scripts to generate plots
from the virtual monitoring data are provided.

4 Hardware Models

The problem with computer systems is the complexity that unfolds because of
the large number of possible combinations for hardware and software. Modeling

3/13

4 Simulation of Hierarchical Storage Systems for TCO and QoS

hardware is particular cumbersome because in the real world the system per-
formance emerges as a result of the laws of physics, but for a virtual model the
dynamics have to be understood and abstracted. For standardized components it
is often relatively easy to find a model that is adequately applicable for the whole
class of components. Composite components, such as the library topologies turn
out to be harder to generalize in a simple way than expected. By mixing mostly
2D and graph-based topology approaches, good approximations of the library
dynamics could be achieved. Another problem occurs with proprietary designs
for which detailed information is hard to find. The same is true for benchmarks
and a comprehensive catalog of performance parameters. The network is an inte-
gral part of hierarchical storage systems and can be used to model and simulate
even low-level components (e.g., chip level) and communication.

4.1 Network Topology & Data Transfers

The network topology is represented using directed graphs. The approach is
straight forward so that network devices such as compute nodes, I/O nodes and
switches are represented by the vertices and edges are used for the individual
links used to connect them. Each link may specify a latency and bandwidth. The
network topology then is keeping track of available capacities. As data is moved
between components, it is possible to allocate and release network allocations.
This schema was used to reduce the number of events in comparison to a packet
based network simulation. But the approach does not scale for large network
topologies where determining the max-flow can become prohibitively expensive.

10.0

10.0
10
.0

1
0
.0

5.0

10.0

10
.01

0
.0

30.0

3
0
.0

25.0

3
0
.0

3
0
.0

30.02
5
.0

30.0

20.0

5.
0 5

.0

20.0
0.
0

5
.0

Client:A

Client:B

Client:C

Client:D

Switch

I/O:A

I/O:B

Switch

Disk Cache

Drive:A

Drive:B

0.0

0.0

0.
0

0
.0

5.0

0.0

0.
0

0
.0

0.0

0
.0

5.0

0
.0

0
.0

0.0

5
.0

0.0

0.0

0.
0

0
.0

0.00.
0

5
.0

Client:A

Client:B

Client:C

Client:D

Switch

I/O:A

I/O:B

Switch

Disk Cache

Drive:A

Drive:B

Fig. 2: Available capacities (left) and a flow from Drive:B to Client:A (right).

4/13

Simulation of Hierarchical Storage Systems for TCO and QoS 5

4.2 Library Topology

To model the library hardware we start with a coarse grained graph-based topol-
ogy that connects individual components and combine it with detailed models
where the graph-based model appears insufficient.

Graph-based Topology Model: A coarse grained structure (e.g., the way
multiple library units are connected to form library complexes including Pass-
Through-Ports and elevators) is modeled using a graph that describe the paths
a tape/a robot can travel. A vertex in the graph consequently is used for compo-
nents and edges can be used to store distance or travel times from component to
component. For each vertex or edge also callbacks can be registered, to allow in-
dividual components to use sophisticated models underneath (e.g., to account for
their current state). In principle, the approach is very flexible and fairly accurate
depending on the level of detail. For highly detailed models, the approach can be
tedious to configure and will be more expensive to compute. When choosing low
levels of detail, errors may accumulate rapidly. Figure 3 illustrates the concept,
and in this case mixes distances and times; this is just one of many ways to
interpret edges and nodes in a graph based topology. By using graphs modeling
becomes intuitive and e.g., the task of serving a tape that sits in Shelf-2 to
Drive-1 becomes the problem of finding the shortest path between the two. As
we want to calculate the time penalty for the next event, for two vertexes vi and
vj and edges evi,vj the time TG to get from vi to vj calculates in principle as
follows. vrobot is used to denote the maximum robot velocity:

get time(evi,vj or v) :=

t if evi,vj or v have time t set

get distance(vi,vj)
vrobot

if e but no time is set

0 otherwise

TG(va, vb) =
∑

v ∈ shortest path(va,vb)

get time(v) + get time(ev,v+1)

Shelf 1
50cm

Shelf -1

4 sec

Elevator, 10 sec

Elevator, 10 sec

Robot

5m/s

Drive 1

Drive 2

...

Shelf 2
20cm

...
get_distance()

Shelf -2
3 sec

...
get_time()

Fig. 3: The graph based topology for coarse grained relationships including li-
brary complexes, Pass-Through-Ports and Elevators connecting multiple rails.

5/13

6 Simulation of Hierarchical Storage Systems for TCO and QoS

Rr,i

Fig. 4: The StorageTek SL8500 library in a two-dimensional model.

2D Topology Model Sometimes projecting complete robot libraries into a two-
dimensional representation yields very good approximations. For the SL8500,
this seems to be an efficient approach (see Figure 4). The reasoning is that
many significant movements that can be performed by the robots or the library
are at most two-dimensional anyways. Finding a path within a 2D model then
becomes calculating the Euclidean-distance between a number of points and a
check if the robot is crossing a forbidden area or an obstacle, in which case
additional measures have to be taken. Movements are usually decomposed of
multiple linear movements, thus care must be taken when calculating distances
and travel times. Logical components are resolved to coordinates by providing a
mapping function for, e.g., slots and drives. Mounting a tape placed in Slot-6,9

to Drive 2 requires visiting multiple coordinates. May T2D(path) be the time it
takes to traverse a path ∈ {(p1, ..., pn) | pi ∈ (x, y);x, y ∈ R}. Assuming different
robot velocities vx and vy for each axis, the total travel time may be defined
by the sum of the time traversing between two points T2D(pi, pj) and possibly
occurring work and wait times Twait/work:

T2D(pj , pi) = max

(
|pix − pjx|

vx
,
|piy − pjy|

vy

)

T2D(path) =

path∑
pi,pj

T2D(pi, pj) + Twait/work

An easing function e(|pid − pjd|, vmax) can to be applied before taking the
maximum, should gradual robot acceleration be taken into account. The exact
times also depend on other robots, which reinforce the need for a component
that guards the behavior of robots as was discussed for graph-based topologies.
In general, we assume hybrid approaches that mix graph-based and 2D models
to achieve good approximations at reasonable effort.

6/13

Simulation of Hierarchical Storage Systems for TCO and QoS 7

Fig. 5: Serpentine Tape Model

4.3 Tape-Seek- and Drive-Busy-Time Models

Commonly there are three layouts for writing data on tape (linear, linear-
serpentine and helical-scan). We will consider only linear-serpentine tape as it
appears to be the most relevant on modern systems. Figure 5 takes the perspec-
tive of the tape drive and illustrates how data is actually read or written on
tape. An array of read/write heads can be positioned relative to the tape in two
dimensions and imprint or read a magnetic signature as the tape passes under-
neath. When spooling to a specific position it is possible to move the tape quite
fast, when reading or writing lower speeds yield the best results. By determining
the following characteristics, it should become possible to approximate the time
it takes to serve a request and how long a drive remains busy:

– pos := (x, t): a tuple describing horizontal x and vertical (track) t displace-
ments relative to the tape. posBOT , posEOT are used to reference the Begin-
of-tape and End-of-tape. A single reel cartridge is mounted and unmounted
with posBOT .

– Tmount and Tunmount: the time it takes to mount and unmount a tape
– vspool, vhead: the speeds to reposition the tape and read-heads
– vread, vwrite: the speed in, e.g., bytes/second to read and write

The time to transition from a current position posi to target position posj is
calculated as follows:

Tseek(posj , posi) = max

(
|posix − posjx|

vspool
,
|posit − posjt|

vhead

)
The time Tread/write to read or write from tape is calculated as follows:

Tread/write(bytes) =
bytes

vread/write

The time a tape drive remains busy Tbusy would account for possibly multiple
seek and reading phases, before it ejects the tape and becomes available again.

Tbusy = Tmount+

BOT,...,BOT∑
posi,posi+1

Tseek(posi, posj) + Tread/write(bytesi)

+Tunmount

7/13

8 Simulation of Hierarchical Storage Systems for TCO and QoS

5 Software Models

To stress the virtual tape library, a request object can be instantiated and sub-
mitted to the simulation. In addition to explicit submission, it possible to register
event providers to the simulation which are polled for future events until they
indicate they have been drained. A workload provider also could create requests
on the fly according to a script, a probability distribution or a trace file. For a
proof of concept it often seemed sufficient to turn to “naive” implementations.

WRITE (Phase 2)

Client Group

Client

Switch
CacheI/O

Server

WRITE (Phase 1)

Tape Drive

delay

Shared Cache

Shared Cache

(a) Life-cycle Write

Client Group

Client

Shared Cache

Switch
CacheI/O

Server

READ (cached)

Tape Drive

READ (not in cache)
Shared Cache

(b) Life-cycle Read

Fig. 6: Handling of read and write like requests for the HSM tape system.

Request Processing A request is modeled by a process that waits for alloca-
tions to use a particular resource. Figure 6 and Figure 7 illustrate the processing
of a request. Writes occur in two-phases with the clients only waiting for the first
phase. Tape I/O can be performed asynchronously for writes. Reads are handled
based on their presence in the global disk cache.

Drive

Drive

Drive
R1,1Rr,i

R1,1Rr,i

Disk I/O Dirty

Queue

Tape I/O

IN

OUT

Robots

uncached reads

cached read

& writes

serve

writeserve

move tape

service

Fig. 7: Different resources and queues required to govern request handling.

8/13

Simulation of Hierarchical Storage Systems for TCO and QoS 9

6 Evaluation

This section outlines how the models are verified (see Section 6.1) and how
simulation with alternative configurations can be used to minimize TCO. Two
scenarios are discussed to show the potential.

6.1 Workload Trace Replay for Verification and Optimization

Workload Description: For verification and fine-tuning of the simulation
HPSS request logs and monitoring records were used. Not all activities that
occur in an actual tape system are included in these traces. As a result service
workloads, and temporarily disabled drives are not accounted for. In addition,
components in this simulation do not fail for the lack of reliable failure rates. The
trace includes a week of scheduled downtime, which is interesting to compare the
recovery of the virtual and the actual system. Figure 8 shows the distribution of
file sizes and also the ratio of reads/writes that hit the system. Figure 9 shows
the distribution of reads and writes over time. The following table provides a
total count of requests as well as the number of involved files and clients:

Timeframe: 35 days Requests: 213105

Files: 115856 Writes: 85961

Clients: 562 Reads: 127144

Fig. 8: Frequency of different request sizes. With a large peak for requests with
a size of 10 GB, which is a result of the data centers pricing schema.

Fig. 9: Observed request types over time for a period of 3 weeks.

9/13

