
NHR-Storage-concept

Hendrik Nolte, Julian Kunkel, Jan Frenzel, Maximilian Knespel,
Matthias Lieber, Marcel Nellesen, Steffen Christgau

April 2023

1 Introduction

Within the NHR ”Zukunftsprojekt” Large-Scale Data Management it is inves-
tigated, how NHR centers can improve their service for data-intensive projects.
These projects projects are distinguished from compute-intensive projects, that
they use data-parallelism rather then task-paralellism. However, this also leads
to distinct challenges for data-intensive projects. This is specifically the case for
storage requirements and usage patterns. One famous example for this are ma-
chine learning workloads which in some cases iteratively read in a large amount
of small files. But also other challenges with regard to quota management,
or data locality can be become important. Within this workpackage, different
points of consideration with a focus on storage have been investgated by a spe-
cific centre and has then be discussed within the regular project meetings. In
the following, these vastly diverse research items are presented.

2 GWDG

2.1 IO-Weather Map

The term weather is generally known as a state of the atmosphere at a partic-
ular place and time with regard to certain observables like temperature, wind,
cloudiness, or rain. With a similar idea, we want to coin the term ”I/O-Weather”
which represents the state of an I/O-System at a particular node and time with
respect to certain observable performance characteristics. This idea is funda-
mentally different from the typically employed serverside monitoring of storage
systems because it does not contain any information about the I/O weather on
a specific node. This makes it difficult to support users when they are suddenly
observing a changing behavior of their applications. Therefore, this approach
has the unique advantage of accurately representing the performance at the
node, i.e., making the performance a user experience observable. However, as
useful as this metric is, it is very expensive to actually obtain the data when
compared to simpler server-side monitoring.

1



Figure 1: Caption

2.1.1 Measurement Approach

One important distinction of I/O-Weather is with regard to regression tests.
In regression tests large-scale I/O Benchmarks, like the IO500, or periodically
run on the cluster to check if the originally measured peak performance can
be reproduced. These regression tests are therefore extremely useful to detect
gradual changes over time or detect a more abrupt performance slowdown due
to an update or config change.

I/O-Weather in comparison is the short-term effect. This can be obtained,
for instance, by using node-local I/O probing, i.e., small periodic micro-benchmarks
to quickly measure the available I/O performance on a single node at a specific
point in time. The probing can be done once a second by a cron job executing
a bash script. For instance, for the data read/write access with dd on a random
1MB block. The metadata operations are measured with MD-Workbench’s stat,
read, delete, and write of a single file per iteration. Other (periodic) alternatives
are imaginable.

2.1.2 Example Measurement

One result of such an approach to measure I/O-Weather is shown in Figure 1.
Here, the response times in seconds are shown with regard to read and write
access for data, and for read, stat, create, and delete for metadata access. One
can clearly see the influence of the different phases of the IO500 benchmark
on the latencies measured by the small probes. For instance, one can see that
data write access times determined by the probe are 100 times slower when it

2



is executed at the same time when an ior-easy-write is running. A similar
increase at the same time, can be determined for the metadata read operation.
However, a ior-hard-write has a lower impact of the I/O-Weather when com-
pared to the ior-easy-write. The operation with the highest impact is the
mdtest-hard-write where an increase of 1000 times can be observed. Gener-
ally, the data read operation is much less influenced by the I/O-Weather than
the data write. Similarly, for the metadata operations, the create, delete, and
stat operations are less affected than the read, while the stat is more affected
than the create and delete.

2.1.3 Conclusion

The I/O-Weather can find abnormal I/O behavior on compute nodes which
might not be easily extractable solely from the storage servers and can be used
to better understand the performance a user experiences.

3 NHR@TUD

3.1 Experiences with the Lustre Storage of latest HPC
Installation

NHR@TUD installed a new CPU-based HPC cluster (Barnard) and brought into
user operation in October 2023. Part of the procurement was a new DDN Ex-
ascaler 6 storage system which is used for working data (scratch) and midterm
archive, both running Lustre FS. The scratch file system consists of 7 DDN
ES400NVX2 equipped with a total of 770TiB NVME capacity and 21PiB spin-
nig disk capacity. NVMEs are used as hot pools for storage tiering (and to a
smaller extend for metadata). Hotpools should especially accelerate random ac-
cesses. The performance with IOR easy is about 400GiB/s write and 600GiB/s
read. Wih mdtest easy write the file systems achieves more than 1.4MIOPS.
However, with hot pools we experienced issues in the automatic migration of
data between from NVMEs to HDDs and the resilience of the OSTs against
IB network instabilities, which both required updates by the vendor. It will be
interesting to see if the hot pool chache enables a more efficient, realiable, and
user-friendly I/O environment compared to an explicit staging with a relatively
small burst buffer and a large parallel filesystem.

3.2 Improving I/O for many small files

Recently, machine learning applications and experiments became popular. Datasets
for training machine learning models are available as compressed archives con-
taining many small files, e. g., ImageNet. However, accessing large amounts of
small files generates new challenges in the field of data storage and data access
due to many metadata operations. Most storage systems are optimized for ac-
cessing comparably few large files. Ratarmount [KRH+24] bridges this gap by
letting a user mount a compressed archive as an additional file system. To the

3



Figure 2: Ratarmount measurements 1

data storage layer of the normal file system, e. g., Lustre, only the archive is ac-
cessed, so that expensive and slow metadata operations are avoided. However,
the user can still access the files as if the archive would have been extracted
first.

3.2.1 Measurements

The capabilities of Ratarmount are depicted in fig. 2 and fig. 3. The diagrams
in fig. 2 from top left to bottom right show the memory usage, the time required
for (first) mounting, the time required to get the contents of one file and the
time required for listing all files depending on the number of files in the archive.
In these diagrams, lower values are better. Ratarmount outperforms the other
approaches in all except the time required for listing all files for large numbers
of files in the archive. Note that ratarmount also shows better scaling behavior
than all other approaches. The diagram on the top right represents the first
mounting phase. In subsequent mount operations, ratarmount does not add
extra time.

The diagrams in fig. 3 from top left to bottom right show the peak resident

4



Figure 3: Ratarmount measurements 2

memory usage, the reading time, the decompressed bandwidth depending on the
decompressed size of the files in the archive. For the bandwidth measurements,
higher values are better, whereas for the other measurements lower values are
better. The diagrams depict the high decompressed bandwidth and low reading
time of archives with ratarmount compared to the other programs in the test.
There are two reasons for the faster performance. Firstly, ratarmount has a
novel parallelized backend for gzip decompression [KB23] and a parallelized
backend for bzip2 decompression. Secondly, same as fuse-archive, it avoids
seek -backs for each 4 KiB block requested via FUSE, which is the reason for
the decreasing performance for larger archive sizes of archivemount.

3.2.2 Conclusion

Ratarmount shows higher speed and better scaling behavior for large archives
than other solutions such as archivemount or fuse-archive for mounting archives
with many small files. With it, many metadata I/O accesses to a global file
system such as Lustre can be avoided, so that the speed of applications accessing
many small files can be improved.

5



CPU Cluster (1194 nodes)

OPA-100

Lustre Storage

GW

GPU Cluster (42 nodes)

2 HFI 1 HCA
IB HDR-200

Figure 4: Schematic Overview of the considered components of NHR@ZIB’s
Lise system using two gateway nodes with four Omni-Path-100 HFIs and two
InfiniBand HDR HCAs.

4 ZIB: Lustre in a Heterogeneous Network En-
vironment

ZIB’s current NHR system Lise comprises a large CPU-only cluster and two
system extensions providing GPU resources from Nvidia and Intel. All nodes
in the Lise system share a both a GPFS-based file-system (exported via NFS)
for the home directories and a 10PB Lustre work filesystem based upon a DDN
appliance. Thus, a consistent view on the data is provided to the users on every
node of the system. While the nodes in the CPU-only part of the system are
connected via 100Gbps Omni-Path, the GPU nodes — added during the life-
time of the CPU system — are connected via 200Gbps HDR InfiniBand, both
having a non-blocking fat-tree topology. To enable this connectivity, two gate-
way nodes, each bridging from one 200Gbps InfiniBand HCAs to two 100Gbps
Omni-Path HFI, are part of the network infrastructure. Figure 4 provides a
schematic overview.

Given the gateways, the theoretical aggregated bandwidth when traversing
the network boundaries is 400Gbps or 50 GByte/s. In contrast, the theoretical
limit of the Lustre file system is 175 GByte/s. However, practical measurements
in the early lifetime of the Lise system have shown a limit of 76GByte/s for
writing and 91GByte/s for reading stream performance, respectively.

4.1 Case Study Goal

Using this setup, the question arises if the gateway nodes impose a (practi-
cal) bottleneck in the usage of the centralized Lustre storage. To answer this
question, the bandwidth of the filesystem will be measured. The GPFS home
appliance won’t be tested in this study as it is assumed that high-bandwidth
workloads will be served by the Lustre filesystem.

6



Table 1: Performance results for IOR running with (GPU Cluster) and without
(CLX Cluster) gateways in the data path. Note that bandwidths are reported
in GByte/s, i.e. with a basis of 10.

Read Write

System Cluster BW (GB/s) kIOPS BW (GB/s) kIOPS

GPU (w/ gateways) 26.9±0.2 3.69±0.03 23.4±0.2 3.2±0.03
CPU (w/o gateways) 99.4±0.9 14.16±0.60 24.7±2.8 3.5±0.07

4.2 Experimental Design

For the measurements, the IOR streaming bandwidth in a file-per-process sce-
nario is measured on two clusters of the system. First, on the Nvdia GPU
cluster which consists of 42 nodes and, second, the CPU cluster. On both clus-
ters, the same IOR parameters will be used. However, due to the different CPU
architectures on both clusters (2x48C Intel CLX AP vs. 2x36 Intel ICL), the
number of processes per node will be set to such the performances on the GPU
cluster is maximized. The IOR parameters are experimentally determined to
achieve maximum performance on the Nvidia GPU cluster first. After that, the
same set of parameters will be applied on the CPU cluster and the obtained
performance is compared.

For IOR, 64 tasks where started on each of the 42 GPU cluster nodes using
the POSIX backend with direct I/O. The chosen block size was 20 GiB, while
the transfer size was set to 8 MiB. To avoid caching effects on the compute
node, the artifical memory usage was set to 90% and a random task offset is
chosen for IOR between writing and reading. We note that no care was taken
to avoid caching effects on the storage system itself. Thus, reading from the
Lustre filesystem can be affected by the preceeding write.

4.3 Results

The experiments where conducted using the parameters described above and
at the end of a maintenence window in which the complete HPC system was
blocked for users. Thus, interference of the benchmark was completely avoided.

The results, i.e. the mean values of three subsequent IOR runs are shown in
Table 1 along with the standard deviation. From the data, we observe that write
performance for both clusters is very close to each other. While it is lower than
what was observed in the early lifetime of the system (see above), it appears to
be the limit of what can be achieved with the given setting. We note that no
higher bandwidth was observed in the GPU cluster using different parameters.
Consequently, we assume that the gateway nodes are saturated.

This appears to be confirmed by the read performance data. While the
achieved read bandwidth for the GPU cluser is close to its write bandwidth, the
read bandwidth on the CPU cluster is almost 3.6 times higher. This relatively

7



high bandwidth might be caused by caching on the Lustre storage servers (see
above). Nevertheless, while using the same setup, the GPU cluster is not able
to achieve similar performance which can be attributed to usage of gateway
nodes. Monitoring data also confirmed that the aggregated bandwidth on the
gateway nodes was not higher than the value reported above. However, even
including the measurement noise, the obtained bandwidth is higher than the
theoretical limit for one of the gateways, which confirms both nodes are in use.
Nevertheless, they apparently limit the bandwidth for reading which is at the
same time well below of the theoretical limit.

4.4 Summary

The case study has shown that gateway nodes can limit the I/O performance.
However, the data has also shown that for the given number of nodes, a read
bandwidth similar to a direct connection to the storage system can be achieved.
While this shows gateway nodes can have an impact on the storage performance,
it has to be noted that in practise the I/O performance demand is usually lower
than the what has been discussed in this section. Especially for GPU usage by
machine learning/AI workloads, it might be interesting to analyse if the perfor-
mance of meta data operations and operation on small files is affected by the
gateway nodes, as latency becomes the dominant component of the performance.

5 RWTH: Applying and monitoring of storage
space

The amount of data, and hence fore the amount of required storage space in
every scientific discipline is rapidly increasing, especially since the rise of AI
researchers tend to keep more and more data. At the same time the number of
users on HPC systems is increasing as well. However, storage space on the HPC
cluster is often limited and it is not suitable for the long-term storage of files.
Therefore, in addition to storage space on the cluster we provide users with
storage space on our research data storage. This storage space is envisioned to
be used for warm data and is available for at least 10 years.

Applying for storage space on the research data storage system is done by
a process that is very similar to applying for computation time. Here we use a
specialized JARDS (Joint Application Review and Dispatch Service) instance,
that is managed by local research data management experts.

Experience has shown that users often struggle with the amount of data that
they want to request. Usually they tend to overprovision by a fair amount. One
reason for this is, that it is difficult to foresee how a project will develop over
time. Even tough, we allow extending of storage space, application in case more
space is required later on, this problem still occurs.

In order to gain a better overview about requested, granted and used quota,
we created a detailed reporting on the current state of the storage system in gen-

8



Figure 5: Quota by type

erals as well as the different applications. One part of the reporting is displayed
in the figure 5.

The figure shows the amount of applied for, allocated and used quota for the
different resource types within our storage system. This has several advantages:

• We can estimate the new amount of data per month and gain an insight
in usage of the storage systems.

• We can estimate the average amount of overprovisioning by the researchers

• We gain insight in the amount of overprovisioning that we can do ourselves

When looking at the resource types rdss3nrw and rdss3rwth you will realize
a very different usage pattern. For the rdss3nrw the amount of used quota is
almost identical to the amount of applied quota. The reason for this is that
these are older research project that were migrated to the platform, therefore
they are mostly reused and not extended. The rdss3rwth resource type on
the other hand resembles our actively used resources type, where we receive
the most storage space applications. As can be seen in the figure, there is a
larger discrepance between applied for, allocated and used quota. As storage
space is often applied for well in advance and can be distributed over multiple
resources within a research project, it can take some time to allocate the space
and some researchers might choose to distribute the remaining quota later on.
The difference between allocated and used quota is more interesting. While a
single measurement doesn’t give much insight, analysing the development of the
system enables an estimate of the growth, time until the storage is full and the
amount of overprovisioning the operators of the storage could do themselves.

9



6 Conclusions

With this report, we have shown developments for monitoring and management
of storage as well as efficient storage usage for data-intensive HPC. This includes
the continuous monitoring of the I/O behavior of compute nodes. The I/O-
Weather Map can be used to identify and understand performance flaws and
for regression tests to monitor the peak performance of a file system over its
lifetime, which might change, e. g. due to configuration changes. Another aspect
of storage monitoring is the usage of the file system, for which we discussed the
storage space usage by HPC projects compared to their storage request applied
for. This is important to better plan capacities, given that research data should
be kept for at least 10 years. Regarding storage performance especially for
AI applications, we showed that Ratarmount can help to improve speed and
reduce load on the parallel file system due to many small files by keeping files
in a compressed archive. Ratarmount allows to access these files as if they were
unpacked, i. e. no changes in the application are required. Another important
aspect of planning procurements is the impact of gateways between different
network architectures (Omnipath, Infiniband) on storage performance. The
measurements have shown a noticeable impact on the read performance on
bandwidth as well as IOPS in this specific setup. In summary, we have shown
that getting the best out of HPC storage systems for the various different needs
of applications requires tools to monitor the file systems and optimize their
performance, which need to be developed further and made available to users
and operators.

References

[KB23] Maximilian Knespel and Holger Brunst. Rapidgzip: Parallel Decom-
pression and Seeking in Gzip Files Using Cache Prefetching. In Pro-
ceedings of the 32nd International Symposium on High-Performance
Parallel and Distributed Computing, The 32nd International Sym-
posium on High-Performance Parallel and Distributed Computing,
pages 295–307, Orlando, FL, US, June 2023. Association for Com-
puting Machinery.

[KRH+24] Maximilian Knespel, Ashwin Ramaswami, Ryan Hitchman,
@RubenKelevra, Corentin Cadiou, Marco Martinelli, Peter Uhrig,
rizzel, and Shawn Presser. mxmlnkn/ratarmount: ratarmount,
February 2024.

10


